Patents by Inventor Matthew R. Zuraski

Matthew R. Zuraski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884616
    Abstract: Processes and apparatus for reforming hydrocarbons to reduce the impact of contaminants created by non-catalyst coking. The reaction zone receives sulfur to inhibit the impact, and a control index is used to control the determine conditions with generally lower pressures. Additionally, a compression zone, pressure control zone and combustion zone operation are provided for the operation of the reaction zone at the generally lower pressures.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: January 30, 2024
    Assignee: UOP LLC
    Inventors: Bryan J. Egolf, Christopher D. DiGiulio, William Yanez, Ka L. Lok, Elie J. Fayad, Haibo Yu, Kristen E. Allaire, Falaah Falih, Jeffrey R. Grott, Sujay R. Krishnamurthy, Hari S. Bajpai, Phillip F. Daly, Matthew R. Zuraski, Hosoo Lim, Joseph Peterson, Michael R. Van de Cotte, Steven A. Bradley
  • Publication number: 20230211306
    Abstract: Processes and apparatuses for regenerating catalysts used in a hydrocarbon conversion process. The catalyst is separated into a bypass portion and an adsorption portion. The bypass portion is passed to a regeneration zone where coke may be removed. A vent gas from the regeneration zone may include an active additive from the catalyst, like a halogen. The vent gas is sent to an adsorption zone which also receives the adsorption portion. In the adsorption zone, the catalyst will contact and adsorb the active additive and then pass to the regeneration zone. The amount of active additive in the vent gas from the regeneration zone and the adsorption zone is reduced.
    Type: Application
    Filed: December 16, 2022
    Publication date: July 6, 2023
    Inventors: Ka L. Lok, Bryan J. Egolf, Matthew R. Zuraski, Vikas Jaggi, Jennifer J. Ozmen
  • Publication number: 20230212095
    Abstract: Processes and apparatus for reforming hydrocarbons to reduce the impact of contaminants created by non-catalyst coking. The reaction zone receives sulfur to inhibit the impact, and a control index is used to control the determine conditions with generally lower pressures. Additionally, a compression zone, pressure control zone and combustion zone operation are provided for the operation of the reaction zone at the generally lower pressures.
    Type: Application
    Filed: September 30, 2022
    Publication date: July 6, 2023
    Inventors: Bryan J. Egolf, Christopher D. DiGiulio, William Yanez, Ka L. Lok, Elie J. Fayad, Haibo Yu, Kristen E. Allaire, Falaah Falih, Jeffrey R. Grott, Sujay R. Krishnamurthy, Hari S. Bajpai, Phillip F. Daly, Matthew R. Zuraski, Hosoo Lim, Joseph Peterson, Michael R. Van de Cotte, Steven A. Bradley
  • Patent number: 9302261
    Abstract: A system for providing a blended cooling air stream to a cooling zone cooler in a continuous catalyst regeneration system. The continuous catalyst regeneration system includes a first effluent stream in fluid communication with a regeneration cooler, a cooler blower that provides a first air stream that is in fluid communication with the regeneration cooler to form a heated first air stream, a second air stream which is combined with the heated first air stream to form a blended cooling air stream, and a cooling zone cooler in fluid communication with the blended cooling air stream.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: April 5, 2016
    Assignee: UOP LLC
    Inventors: Ka L. Lok, Christopher Naunheimer, Matthew R. Zuraski
  • Publication number: 20140004017
    Abstract: Systems and processes for providing a blended cooling air stream to a cooling zone cooler in a continuous catalyst regeneration system are provided that include removing a first effluent stream from a regeneration tower, providing the first effluent stream to a regeneration cooler; providing a first air stream to the regeneration cooler to form a heated first air stream, combining at least a portion of the heated first air stream with a second air stream to form a blended cooling air stream, and providing the blended cooling air stream to a cooling zone cooler.
    Type: Application
    Filed: August 27, 2013
    Publication date: January 2, 2014
    Applicant: UOP LLC
    Inventors: Ka L. Lok, Christopher Naunheimer, Matthew R. Zuraski