Patents by Inventor Matthew Robert Dreher

Matthew Robert Dreher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139354
    Abstract: Some embodiments relate to imageable radioisotopic microspheres. In some embodiments, the imageable microspheres are radiolabeled with imageable radioisotopes. In some embodiments, the imageable radioisotope is directly coupled to a surface of a substrate of the microsphere. In some embodiments, the imageable microspheres can be used as surrogate particles to predict the distribution of therapeutic microspheres comprising radiotherapeutic isotopes.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Applicants: Boston Scientific Medical Device Limited, University of Virginia Patent Foundation
    Inventors: James Radford Stone, Kiel Douglas Neumann, Matthew Robert Dreher
  • Patent number: 11904029
    Abstract: Some embodiments relate to imageable radioisotopic microspheres. In some embodiments, the imageable microspheres are radiolabeled with imageable radioisotopes. In some embodiments, the imageable radioisotope is directly coupled to a surface of a substrate of the microsphere. In some embodiments, the imageable microspheres can be used as surrogate particles to predict the distribution of therapeutic microspheres comprising radiotherapeutic isotopes.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: February 20, 2024
    Assignees: Boston Scientific Medical Device Limited, University of Virginia Patent Foundation
    Inventors: James Radford Stone, Kiel Douglas Neumann, Matthew Robert Dreher
  • Patent number: 11116405
    Abstract: The invention provides for a medical instrument (200) comprising a magnetic resonance imaging system (202) and a high-intensity focused ultrasound system (204) with an electronically controllable and a mechanically controllable focus.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: September 14, 2021
    Inventors: Ari Ilkka Mikael Partanen, Matthew Robert Dreher, Pavel Sergeyevich Yarmolenko, Bradford Johns Wood, Elma Natalia Carvajal Gallardo
  • Publication number: 20210236669
    Abstract: Some embodiments relate to imageable radioisotopic microspheres. In some embodiments, the imageable microspheres are radiolabeled with imageable radioisotopes. In some embodiments, the imageable radioisotope is directly coupled to a surface of a substrate of the microsphere. In some embodiments, the imageable microspheres can be used as surrogate particles to predict the distribution of therapeutic microspheres comprising radiotherapeutic isotopes.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 5, 2021
    Inventors: James Radford Stone, Kiel Douglas Neumann, Matthew Robert Dreher
  • Patent number: 10099069
    Abstract: A therapeutic apparatus (900, 1000) comprising a high intensity focused ultrasound system (904) for heating a target zone (940, 1022). The therapeutic apparatus further comprises a magnetic resonance imaging system (902). The therapeutic apparatus further comprises a memory (952) containing machine executable instructions (980, 982, 984, 986, 988, 990) for execution by a processor (944). Execution of the instructions cause the processor to: generate (702, 802) heating commands (964) which cause the high intensity focused ultrasound system to sonicate the subject; repeatedly acquire (704, 804) magnetic resonance data (954) during execution of the heating commands; repeatedly calculate (706, 806) a spatially dependent parameter (970); and repeatedly modify (708, 808) the heating commands in accordance with the spatially dependent parameter such that within the target zone the spatially dependent parameter remains below a first predetermined threshold and above a second predetermined threshold.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: October 16, 2018
    Assignees: Profound Medical Inc., National Institutes of Health
    Inventors: Ari Ilkka Mikael Partanen, Matthew Robert Dreher, Pavel Sergeyevich Yarmolenko, Antti Johannes Viitala, Julia Kristina Enholm, Max Oskar Kohler
  • Publication number: 20150258353
    Abstract: A mild hyperthermia treatment apparatus (10) includes an imager (12), which generates a planning image (34) and temperature maps (36) of a target region. An array of ultrasonic transducer drivers (52) individually drives ultrasonic transducers of a phased array of ultrasonic transducers (50). One or more processors or units receive a target temperature profile, and calculate power, frequency, and relative phase for the transducer drivers to drive the phased array of ultrasonic transducers to generate a multi-foci sonication pattern configured to heat the target region with the target temperature profile while limiting peak acoustic pressures. During treatment, the imager generates a series of temperature maps which the one or more processors or units compare with the target temperature profile and, based on the comparison, adjust the power, frequency and relative phase with which the transducer drivers drive the ultrasonic transducers.
    Type: Application
    Filed: September 30, 2013
    Publication date: September 17, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Art Ikka Mikael Partanen, Matti Oskari Tillander, Matthew Robert Dreher, Max Oskar Kohler
  • Publication number: 20150080705
    Abstract: The invention provides for a medical instrument (200) comprising a magnetic resonance imaging system (202) and a high-intensity focused ultrasound system (204) with an electronically controllable and a mechanically controllable focus.
    Type: Application
    Filed: April 9, 2013
    Publication date: March 19, 2015
    Inventors: Ari Ilkka Mikael Partanen, Matthew Robert Dreher, Pavel Sergeyevich Yarmolenko, Bradford Johns Wood, Elma Natalia Carvajal Gallardo
  • Publication number: 20130217950
    Abstract: A therapeutic apparatus (900, 1000) comprising a high intensity focused ultrasound system (904) for heating a target zone (940, 1022). The therapeutic apparatus further comprises a magnetic resonance imaging system (902). The therapeutic apparatus further comprises a memory (952) containing machine executable instructions (980, 982, 984, 986, 988, 990) for execution by a processor (944). Execution of the instructions cause the processor to: generate (702, 802) heating commands (964) which cause the high intensity focused ultrasound system to sonicate the subject; repeatedly acquire (704, 804) magnetic resonance data (954) during execution of the heating commands; repeatedly calculate (706, 806) a spatially dependent parameter (970); and repeatedly modify (708, 808) the heating commands in accordance with the spatially dependent parameter such that within the target zone the spatially dependent parameter remains below a first predetermined threshold and above a second predetermined threshold.
    Type: Application
    Filed: October 11, 2011
    Publication date: August 22, 2013
    Applicants: NATIONAL INSTITUTES OF HEALTH, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ari Ilkka Mikael Partanen, Matthew Robert Dreher, Pavel Sergeyevich Yarmolenko, Antti Johannes Viitala, Julia Kristina Enholm, Max Oskar Kohler
  • Publication number: 20100189643
    Abstract: The present invention provides conjugate compounds comprising (a) an active compound; (b) optionally, but in some embodiments preferably, an affinity binding agent; and (c) a block copolymer, the block copolymer comprising: (i) a first elastin-like polypeptide having a first Tt and (U) a second elastin-like polypeptide having a second Tt greater than the first Tt. Method for the targeted delivering of an active compound in vivo to a selected region within a subject with such agents are also described.
    Type: Application
    Filed: July 17, 2007
    Publication date: July 29, 2010
    Applicant: DUKE UNIVERSITY
    Inventors: Ashutosh Chilkoti, Matthew Robert Dreher, Daniel Eugene Meyer