Patents by Inventor Matthew S. Berzins

Matthew S. Berzins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9450578
    Abstract: Inventive aspects include an integrated clock gater (ICG) circuit having clocked complimentary voltage switched logic (CICG) that delivers high performance while maintaining low power consumption characteristics. The CICG circuit provides a small enable setup time and a small clock-to-enabled-clock delay. A significant reduction in clock power consumption is achieved in both enabled and disabled modes, but particularly in the disabled mode. Complimentary latches work in tandem to latch different voltage levels at different nodes depending on the voltage level of the received clock signal and whether or not an enable signal is asserted. An inverter takes the voltage level from one of the nodes, inverts it, and outputs a gated clock signal. The gated clock signal may be active or quiescent depending on the various voltage levels. Time is “borrowed” from an evaluation window and added to a setup time to provide greater tolerances for receiving the enable signal.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: September 20, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Matthew S. Berzins, Prashant U. Kenkare
  • Publication number: 20160049930
    Abstract: Inventive aspects include an integrated clock gater (ICG) circuit having clocked complimentary voltage switched logic (CICG) that delivers high performance while maintaining low power consumption characteristics. The CICG circuit provides a small enable setup time and a small clock-to-enabled-clock delay. A significant reduction in clock power consumption is achieved in both enabled and disabled modes, but particularly in the disabled mode. Complimentary latches work in tandem to latch different voltage levels at different nodes depending on the voltage level of the received clock signal and whether or not an enable signal is asserted. An inverter takes the voltage level from one of the nodes, inverts it, and outputs a gated clock signal. The gated clock signal may be active or quiescent depending on the various voltage levels. Time is “borrowed” from an evaluation window and added to a setup time to provide greater tolerances for receiving the enable signal.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: Matthew S. BERZINS, Prashant U. KENKARE
  • Patent number: 9203382
    Abstract: Inventive aspects include an integrated clock gater (ICG) circuit having clocked complimentary voltage switched logic (CICG) that delivers high performance while maintaining low power consumption characteristics. The CICG circuit provides a small enable setup time and a small clock-to-enabled-clock delay. A significant reduction in clock power consumption is achieved in both enabled and disabled modes, but particularly in the disabled mode. Complimentary latches work in tandem to latch different voltage levels at different nodes depending on the voltage level of the received clock signal and whether or not an enable signal is asserted. An inverter takes the voltage level from one of the nodes, inverts it, and outputs a gated clock signal. The gated clock signal may be active or quiescent depending on the various voltage levels. Time is “borrowed” from an evaluation window and added to a setup time to provide greater tolerances for receiving the enable signal.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: December 1, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Matthew S. Berzins, Prashant U. Kenkare
  • Publication number: 20150145577
    Abstract: Inventive aspects include an integrated clock gater (ICG) circuit having clocked complimentary voltage switched logic (CICG) that delivers high performance while maintaining low power consumption characteristics. The CICG circuit provides a small enable setup time and a small clock-to-enabled-clock delay. A significant reduction in clock power consumption is achieved in both enabled and disabled modes, but particularly in the disabled mode. Complimentary latches work in tandem to latch different voltage levels at different nodes depending on the voltage level of the received clock signal and whether or not an enable signal is asserted. An inverter takes the voltage level from one of the nodes, inverts it, and outputs a gated clock signal. The gated clock signal may be active or quiescent depending on the various voltage levels. Time is “borrowed” from an evaluation window and added to a setup time to provide greater tolerances for receiving the enable signal.
    Type: Application
    Filed: February 3, 2015
    Publication date: May 28, 2015
    Inventors: Matthew S. BERZINS, Prashant U. KENKARE
  • Patent number: 8975949
    Abstract: Inventive aspects include an integrated clock gater (ICG) circuit having clocked complimentary voltage switched logic (CICG) that delivers high performance while maintaining low power consumption characteristics. The CICG circuit provides a small enable setup time and a small clock-to-enabled-clock delay. A significant reduction in clock power consumption is achieved in both enabled and disabled modes, but particularly in the disabled mode. Complimentary latches work in tandem to latch different voltage levels at different nodes depending on the voltage level of the received clock signal and whether or not an enable signal is asserted. An inverter takes the voltage level from one of the nodes, inverts it, and outputs a gated clock signal. The gated clock signal may be active or quiescent depending on the various voltage levels. Time is “borrowed” from an evaluation window and added to a setup time to provide greater tolerances for receiving the enable signal.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Matthew S. Berzins, Prashant U. Kenkare
  • Publication number: 20140266396
    Abstract: Inventive aspects include an integrated clock gater (ICG) circuit having clocked complimentary voltage switched logic (CICG) that delivers high performance while maintaining low power consumption characteristics. The CICG circuit provides a small enable setup time and a small clock-to-enabled-clock delay. A significant reduction in clock power consumption is achieved in both enabled and disabled modes, but particularly in the disabled mode. Complimentary latches work in tandem to latch different voltage levels at different nodes depending on the voltage level of the received clock signal and whether or not an enable signal is asserted. An inverter takes the voltage level from one of the nodes, inverts it, and outputs a gated clock signal. The gated clock signal may be active or quiescent depending on the various voltage levels. Time is “borrowed” from an evaluation window and added to a setup time to provide greater tolerances for receiving the enable signal.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Matthew S. Berzins, Prashant U. Kenkare
  • Patent number: 8289060
    Abstract: A flip-flop includes a functional latch and a retention latch. The functional latch is configured to maintain a logic state of the flip-flop in a power-up mode and the retention latch is configured to maintain the logic state of the flip-flop in a power-down mode. The retention latch is selectively coupled to the functional latch and the retention latch is configured to maintain the logic state in the power-down mode irrespective of a level of an associated clock signal when the power-down mode is entered. A clock pulse that clocks the flip-flop is derived from the associated clock signal.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: October 16, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Samuel J. Tower, Matthew S. Berzins, Charles A. Cornell
  • Patent number: 7826581
    Abstract: An apparatus and method are disclosed synchronization of a clock signal to a data signal. The apparatus includes a phase lock and tracking logic circuit configured to detect a plurality of values. Each of the plurality of values indicates a position of a data edge of the data signal. The phase lock and tracking logic circuit adds the plurality of values to generate a result and to adjust the clock signal if the result is greater than a predetermined value, or threshold. The phase lock and tracking logic circuit may be configured to maintain the clock signal linearity approximately between the end of a first data packet and the beginning of a second data packet.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: November 2, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Stephen M. Prather, Matthew S. Berzins, Charles A. Cornell, Steven P. Larky, Joseph A. Cetin
  • Patent number: 7683697
    Abstract: A circuit has an input for receiving a power mode control signal to indicate a low power mode. A plurality of non-inverting buffers forms a fanout signal distribution network and provides buffering of the power mode control signal for gated power domain functional circuitry. Each non-inverting buffer has an even number of serially-connected inverting gates, at least a portion providing respective outputs having a valid logic state in the low power mode. Two voltages are used, one of which is disconnected during the low power mode. The non-inverting buffers have a first inverting gate connected to a continuous voltage terminal and a second inverting gate, collectively sized larger than the first inverting gate and connected to a voltage terminal which is selectively disconnected during the low power mode from the continuous voltage terminal.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Matthew S. Berzins, Charles A. Cornell, Andrew P. Hoover
  • Publication number: 20090295467
    Abstract: A circuit has an input for receiving a power mode control signal to indicate a low power mode. A plurality of non-inverting buffers forms a fanout signal distribution network and provides buffering of the power mode control signal for gated power domain functional circuitry. Each non-inverting buffer has an even number of serially-connected inverting gates, at least a portion providing respective outputs having a valid logic state in the low power mode. Two voltages are used, one of which is disconnected during the low power mode. The non-inverting buffers have a first inverting gate connected to a continuous voltage terminal and a second inverting gate, collectively sized larger than the first inverting gate and connected to a voltage terminal which is selectively disconnected during the low power mode from the continuous voltage terminal.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventors: Matthew S. Berzins, Charles A. Cornell, Andrew P. Hoover
  • Patent number: 7583121
    Abstract: A flip-flop includes a master latch, a first inverter, a slave latch, and a first clocked inverter. The master latch has an input for receiving an input signal and an output. The first inverter has an input coupled to the output of the master latch and an output for providing an output of the flip-flop. The slave latch is directly connected to the input of the first inverter. The first clocked inverter has an input directly connected to the slave latch and an output coupled to the master latch.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: September 1, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Matthew S. Berzins, Charles A. Cornell, Samuel J. Tower
  • Publication number: 20090058485
    Abstract: A flip-flop includes a master latch, a first inverter, a slave latch, and a first clocked inverter. The master latch has an input for receiving an input signal and an output. The first inverter has an input coupled to the output of the master latch and an output for providing an output of the flip-flop. The slave latch is directly connected to the input of the first inverter. The first clocked inverter has an input directly connected to the slave latch and an output coupled to the master latch.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Inventors: Matthew S. Berzins, Charles A. Cornell, Samuel J. Tower
  • Publication number: 20080315932
    Abstract: A flip-flop includes a functional latch and a retention latch. The functional latch is configured to maintain a logic state of the flip-flop in a power-up mode and the retention latch is configured to maintain the logic state of the flip-flop in a power-down mode. The retention latch is selectively coupled to the functional latch and the retention latch is configured to maintain the logic state in the power-down mode irrespective of a level of an associated clock signal when the power-down mode is entered. A clock pulse that clocks the flip-flop is derived from the associated clock signal.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 25, 2008
    Inventors: Samuel J. Tower, Matthew S. Berzins, Charles A. Cornell
  • Patent number: 7239178
    Abstract: A voltage level translation circuit includes a first power supply voltage, a second power supply voltage, wherein the second supply voltage is lower than the first supply voltage, a low voltage input, wherein the low voltage input is referenced from the second supply voltage, a resistive element leaker transistor having a source and a drain, wherein the source is coupled to the first power supply voltage, a PMOSFET having a gate and a source, wherein the source is coupled to the first power supply voltage, and a pulse generator coupled to the gate of the PMOSFET, wherein the pulse generator is capable of controlling the operation of the PMOSFET.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 3, 2007
    Assignee: Cypress Semiconductor Corp.
    Inventors: Charles A. Cornell, Matthew S. Berzins, Stephen M. Prather
  • Patent number: 7176720
    Abstract: Disclosed is a circuit comprising a differential input amplifier stage, a capacitor stage, an inverter chain stage, and a biasing circuit. The inverter chain stage may be formed with or without feedback depending on whether a clock signal or data signal is to be translated using the disclosed circuit. The biasing circuit can be formed using either inverters or transmission gates. Moreover, the biasing circuit, the inverter chain stage, and the amplifier stage can be connected to a power down circuit which, when the translator is not being used, will ensure various circuitry of the translator will not consume extensive power. The inverter chain stage, biasing circuit, and capacitor stage are formed on both an upper and lower section to produce true and complementary outputs that have a consistent and equal delay from the transitions of the incoming differential input signal so as to minimize jitter and associated duty cycle of the translated output.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: February 13, 2007
    Assignee: Cypress Semiconductor Corp.
    Inventors: Stephen M. Prather, Jeffrey F. Waldrip, Matthew S. Berzins, Charles A. Cornell
  • Patent number: 7173453
    Abstract: A circuit according to some embodiments of the invention includes a first differential to single ended translator having a first output, a second differential to single ended translator having a second output, and a latch coupled to the first output and the second output, where the latch is configured to select the slower of the first output and the second output.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: February 6, 2007
    Assignee: Cypress Semiconductor Corp.
    Inventors: Stephen M. Prather, Matthew S. Berzins, Jeffrey W. Waldrip
  • Patent number: 6781465
    Abstract: Embodiments of the invention describe a method and apparatus for detecting valid differential signals with half the number of differential amplifiers required by conventional methods. By purposely mismatching an otherwise matched differential pair, a self-induced DC offset voltage is created and the additional circuitry required to generate external reference voltages according to conventional methods is eliminated. Embodiments of the invention also have improved noise rejection characteristics and enhanced high-speed capability compared to conventional circuits.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: August 24, 2004
    Assignee: Cypress Semiconductor Corp.
    Inventors: Matthew S. Berzins, Charles A. Cornell, Stephen M. Prather