Patents by Inventor Matthew S. Bottkol

Matthew S. Bottkol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10317196
    Abstract: Systems and methods for determining the shape and/or position of an object are described. A fiber optic shape sensor (FOSS) may be used in combination with one or more inertial measurement units (IMUs) to mutually cross-correct for errors in the sensors' measurements of position and/or orientation. The IMU(s) may be attached to the FOSS's optical fiber, such that each IMU measures the orientation of a corresponding portion of the optical fiber. The position and shape of the optical fiber can then be determined based on the measurements obtained from the IMU(s) and the measurements obtained from the FOSS. For example, the FOSS measurements and the IMU measurements can be provided to a state estimation unit (e.g., a Kalman filter), which can estimate the position and/or shape of the optical fiber based on those measurements. In some embodiments, the estimates of position are used for navigation of tethered mobile devices.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: June 11, 2019
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Bruce Dow, Marc McConley, Gregory Blasche, Paul Bohn, Matthew S. Bottkol, Michael Ricard, Evan M. Lally, Sandra M. Klute, Matthew T. Reaves, Emily H. Templeton, James Donna
  • Publication number: 20160370177
    Abstract: Systems and methods for determining the shape and/or position of an object are described. A fiber optic shape sensor (FOSS) may be used in combination with one or more inertial measurement units (IMUs) to mutually cross-correct for errors in the sensors' measurements of position and/or orientation. The IMU(s) may be attached to the FOSS's optical fiber, such that each IMU measures the orientation of a corresponding portion of the optical fiber. The position and shape of the optical fiber can then be determined based on the measurements obtained from the IMU(s) and the measurements obtained from the FOSS. For example, the FOSS measurements and the IMU measurements can be provided to a state estimation unit (e.g., a Kalman filter), which can estimate the position and/or shape of the optical fiber based on those measurements. In some embodiments, the estimates of position are used for navigation of tethered mobile devices.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 22, 2016
    Inventors: Juha-Pekka J. Laine, Bruce Dow, Marc McConley, Gregory Blasche, Paul Bohn, Matthew S. Bottkol, Michael Ricard, Evan M. Lally, Sandra M. Klute, Matthew T. Reaves, Emily H. Templeton, James Donna
  • Patent number: 8978474
    Abstract: A micro-electro-mechanical systems (MEMS) inertial measurement system facilitates accurate location and/or attitude measurements via passive thermal management of MEMS inertial sensors. Accuracy of the system is also improved by subjecting the inertial sensors to programmed single-axis gimbal motion, and by performing coarse and fine adjustments to the attitude estimates obtained by the system based on the programmed motion and on the passive thermal management of the sensors.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 17, 2015
    Assignees: The Charles Stark Draper Laboratory, Inc., Massachusetts Institute of Technology
    Inventors: Matthew S. Bottkol, Richard D. Elliott, Michael Y. Feng, Thomas F. Marinis, Michael F. Mcmanus, Shan Mohiuddin, Peter G. Sherman, John E. Pritchett, Jeffery W. Warren, Charles H. Lange
  • Publication number: 20130025369
    Abstract: A micro-electro-mechanical systems (MEMS) inertial measurement system facilitates accurate location and/or attitude measurements via passive thermal management of MEMS inertial sensors. Accuracy of the system is also improved by subjecting the inertial sensors to programmed single-axis gimbal motion, and by performing coarse and fine adjustments to the attitude estimates obtained by the system based on the programmed motion and on the passive thermal management of the sensors.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: Matthew S. Bottkol, Richard D. Elliott, Michael Y. Feng, Thomas F. Marinis, Michael F. McManus, Shan Mohiuddin, Peter G. Sherman, John E. Pritchett, Jeffery W. Warren, Charles H. Lange