Patents by Inventor Matthew Silva

Matthew Silva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136802
    Abstract: The invention may be embodied in other forms than those specifically disclosed herein without departing from itMulti-kW-class blue (400-495 nm) fiber-delivered lasers and module configurations. In embodiments, the lasers propagate laser beams having beam parameter products of <5 mm*mrad, which are used in materials processing, welding and pumping a Raman laser. In an embodiment the laser system is an integration of fiber-coupled modules, which are in turn made up of submodules. An embodiment has sub-modules having a plurality of lensed blue semiconductor gain chips with low reflectivity front facets. These are locked in wavelength with a wavelength spread of <1 nm by using volume Bragg gratings in an external cavity configuration. An embodiment has modules having of a plurality of submodules, which are combined through wavelength multiplexing with a bandwidth of <10 nm, followed by polarization beam combining. The output of each module is fiber-coupled into a low NA fiber.
    Type: Application
    Filed: April 30, 2023
    Publication date: April 25, 2024
    Applicant: Nuburu, Inc.
    Inventors: Mark Zediker, Jean Philippe Feve, Matthew Silva Sa, Michael Jansen
  • Patent number: 11862927
    Abstract: There are provided high power, high brightness solid-state laser systems that maintain initial beam properties, including power levels, and do not have degradation of performance or beam quality, for at least 10,000 hours of operation. There are provided high power, high brightness solid-state laser systems containing Oxygen in their internal environments and which are free from siloxanes.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: January 2, 2024
    Assignee: Nuburu, Inc.
    Inventors: Jean-Philippe Feve, Matthew Silva Sa, Monica Greenlief, Donald Millick, Denis Brisson, Nathaniel Dick, Mark S Zediker
  • Patent number: 11811196
    Abstract: There is provided assemblies for combining a group of laser sources into a combined laser beam. There is further provided a blue diode laser array that combines the laser beams from an assembly of blue laser diodes. There are provided laser processing operations and applications using the combined blue laser beams from the laser diode arrays and modules.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: November 7, 2023
    Assignee: Nuburu, Inc.
    Inventors: Mark S. Zediker, Matthew Silva Sa, Jean Michel Pelaprat, David Hill, Mathew Finuf
  • Publication number: 20230208097
    Abstract: There are provided high power, high brightness solid-state laser systems that maintain initial beam properties, including power levels, and do not have degradation of performance or beam quality, for at least 10,000 hours of operation. There are provided high power, high brightness solid-state laser systems containing Oxygen in their internal environments and which are free from siloxanes.
    Type: Application
    Filed: February 3, 2020
    Publication date: June 29, 2023
    Applicant: Nuburu, Inc.
    Inventors: Jean-Philippe Feve, Matthew Silva Sa, Monica Monica Greenlief, Donald Millick, Denis Brisson, Nathaniel Dick, Mark S Zediker
  • Patent number: 11679819
    Abstract: A vehicle tailgate with an integrated collapsible door comprises a tailgate having an outer wall, an inner wall and a cavity there between, a door section of the tailgate having an inboard wall and an outboard wall and being moveable between a closed position and an open position substantially within the envelope of the tailgate, the inboard wall and the outboard wall being connected by a linkage to permit relative movement there between, a first track to guide the motion of the inboard wall and a second track to guide the motion of the outboard wall, and a power drive unit to power the motion of the door section, such that in the closed position of the door section the inboard wall is flush with the inner wall of the tailgate and the outboard wall is flush with the outer wall of the tailgate, and in the open position of the door section at least a portion of the inboard wall and at least a portion of the outboard wall lie within the cavity between the outer wall and the inner wall of the tailgate.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: June 20, 2023
    Assignee: Multimatic Inc.
    Inventor: Matthew Silva
  • Patent number: 11646549
    Abstract: The invention may be embodied in other forms than those specifically disclosed herein without departing from itMulti-kW-class blue (400-495 nm) fiber-delivered lasers and module configurations. In embodiments, the lasers propagate laser beams having beam parameter products of <5 mm*mrad, which are used in materials processing, welding and pumping a Raman laser. In an embodiment the laser system is an integration of fiber-coupled modules, which are in turn made up of submodules. An embodiment has sub-modules having a plurality of lensed blue semiconductor gain chips with low reflectivity front facets. These are locked in wavelength with a wavelength spread of <1 nm by using volume Bragg gratings in an external cavity configuration. An embodiment has modules having of a plurality of submodules, which are combined through wavelength multiplexing with a bandwidth of <10 nm, followed by polarization beam combining. The output of each module is fiber-coupled into a low NA fiber.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: May 9, 2023
    Assignee: Nuburu, Inc.
    Inventors: Mark Zediker, Jean Philippe Feve, Matthew Silva Sa, Michael Jansen
  • Publication number: 20230061847
    Abstract: A vehicle tailgate with an integrated collapsible door comprises a tailgate having an outer wall, an inner wall and a cavity there between, a door section of the tailgate having an inboard wall and an outboard wall and being moveable between a closed position and an open position substantially within the envelope of the tailgate, the inboard wall and the outboard wall being connected by a linkage to permit relative movement there between, a first track to guide the motion of the inboard wall and a second track to guide the motion of the outboard wall, and a power drive unit to power the motion of the door section, such that in the closed position of the door section the inboard wall is flush with the inner wall of the tailgate and the outboard wall is flush with the outer wall of the tailgate, and in the open position of the door section at least a portion of the inboard wall and at least a portion of the outboard wall lie within the cavity between the outer wall and the inner wall of the tailgate.
    Type: Application
    Filed: February 17, 2021
    Publication date: March 2, 2023
    Inventor: Matthew Silva
  • Publication number: 20220053847
    Abstract: A garment includes a wearer protection assembly for a driver of an open vehicle, such as a motorcycle. The wearer protection assembly is operative to automatically detect for the driver wearing the garment, the driver's departure, for example, as a consequence of a highway accident, from the vehicle. In response to such detection, the wearer protection assembly deploys a normally (prior to departure from the motor vehicle) deflated bladder-like gas reservoir to be explosively inflated with a previously-stored compressed gas. The inflated bladder-like gas reservoir provides a gas-filled volume between an outer surface of the garment and body parts of the thrown person. That gas-filled volume is compressible and the gas within absorbs some of the energy encountered by the thrown person in response to external forces resulting from the accident or other separation-causing event.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 24, 2022
    Inventors: Michael van der Sleesen, Matthew Silva, Nadya Spodarik
  • Publication number: 20220021183
    Abstract: There is provided assemblies for combining a group of laser sources into a combined laser beam. There is further provided a blue diode laser array that combines the laser beams from an assembly of blue laser diodes. There are provided laser processing operations and applications using the combined blue laser beams from the laser diode arrays and modules.
    Type: Application
    Filed: April 5, 2021
    Publication date: January 20, 2022
    Applicant: Nuburu, Inc.
    Inventors: Mark S. Zediker, Matthew Silva Sa, Jean Michel Pelaprat, David Hill, Mathew Finuf
  • Patent number: 10971896
    Abstract: There is provided assemblies for combining a group of laser sources into a combined laser beam. There is further provided a blue diode laser array that combines the laser beams from an assembly of blue laser diodes. There are provided laser processing operations and applications using the combined blue laser beams from the laser diode arrays and modules.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: April 6, 2021
    Assignee: Nuburu, Inc.
    Inventors: Mark S. Zediker, Matthew Silva Sa, Jean Michel Pelaprat, David Hill, Mathew Finuf
  • Publication number: 20200271859
    Abstract: Fiber laser having a monolithic laser resonator having laser affected zones for providing laser beams having wavelengths below 800 nm and from between 400 nm to 800 nm. Methods of using femtosecond lasers to form fiber Bragg gratings, volume Bragg gratings, space gratings, and laser beam delivery patterns for changing the index of refraction within optical fibers.
    Type: Application
    Filed: October 29, 2019
    Publication date: August 27, 2020
    Applicant: Nuburu, Inc.
    Inventors: Mark S. Zediker, Matthew Silva Sa, Robert Stegeman, James Tucker, Donald A. Millick
  • Patent number: 10656328
    Abstract: Fiber laser having a monolithic laser resonator having laser affected zones for providing laser beams having wavelengths below 800 nm and from between 400 nm to 800 nm. Methods of using femtosecond lasers to form fiber Bragg gratings, volume Bragg gratings, space gratings, and laser beam delivery patterns for changing the index of refraction within optical fibers.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 19, 2020
    Assignee: Nuburu, Inc.
    Inventors: Mark S. Zediker, Matthew Silva Sa, Robert Stegeman, James Tucker, Donald A. Millick
  • Publication number: 20190273365
    Abstract: The invention may be embodied in other forms than those specifically disclosed herein without departing from itMulti-kW-class blue (400-495 nm) fiber-delivered lasers and module configurations. In embodiments, the lasers propagate laser beams having beam parameter products of <5 mm*mrad, which are used in materials processing, welding and pumping a Raman laser. In an embodiment the laser system is an integration of fiber-coupled modules, which are in turn made up of submodules. An embodiment has sub-modules having a plurality of lensed blue semiconductor gain chips with low reflectivity front facets. These are locked in wavelength with a wavelength spread of <1 nm by using volume Bragg gratings in an external cavity configuration. An embodiment has modules having of a plurality of submodules, which are combined through wavelength multiplexing with a bandwidth of <10 nm, followed by polarization beam combining. The output of each module is fiber-coupled into a low NA fiber.
    Type: Application
    Filed: November 1, 2018
    Publication date: September 5, 2019
    Applicant: Nuburu, Inc.
    Inventors: Mark Zediker, Jean Philippe Five, Matthew Silva Se, Michael Jansen
  • Publication number: 20170343729
    Abstract: Fiber laser having a monolithic laser resonator having laser affected zones for providing laser beams having wavelengths below 800 nm and from between 400 nm to 800 nm. Methods of using femtosecond lasers to form fiber Bragg gratings, volume Bragg gratings, space gratings, and laser beam delivery patterns for changing the index of refraction within optical fibers.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 30, 2017
    Applicant: NUBURU, INC.
    Inventors: Mark S. Zediker, Matthew Silva Sa, Robert Stegeman, James Tucker, Don Millick
  • Publication number: 20160322777
    Abstract: There is provided assemblies for combining a group of laser sources into a combined laser beam. There is further provided a blue diode laser array that combines the laser beams from an assembly of blue laser diodes. There are provided laser processing operations and applications using the combined blue laser beams from the laser diode arrays and modules.
    Type: Application
    Filed: July 14, 2016
    Publication date: November 3, 2016
    Applicant: NUBURU, INC.
    Inventors: Mar S. Zediker, Matthew Silva Sa, Jean Michel Pelaprat, David Hill, Mathew Finuf
  • Patent number: 9375516
    Abstract: A growth factor delivery scaffold combines a heparin/fibrin-based delivery system (HBDS) with a backbone based on polymer nanofibers for tissue (e.g., tendon and ligament) repair. The scaffold has improved surgical handling properties compared to the gelatinous consistency of the prior art HBDS system and retains the capability for delivering mesenchymal cells and controlling the release of growth factors. One application for the scaffold is mesenchymal stem cell (MSC) therapy for flexor tendon repair. The scaffold can deliver growth factors in a sustained manner, can be implanted for flexor tendon repair, is biocompatible, and is not cytotoxic. The growth factor delivery scaffold may also be used in the surgical repair of an injury to bone, muscle, cartilage, or other tissues.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: June 28, 2016
    Assignee: WASHINGTON UNIVERSITY
    Inventors: Stavros Thomopoulos, Shelly Sakiyama-Elbert, Matthew Silva, Richard Gelberman, Younan Xia, Andrea Schwartz, Jingwei Xie
  • Publication number: 20140135945
    Abstract: A growth factor delivery scaffold combines a heparin/fibrin-based delivery system (HBDS) with a backbone based on polymer nanofibers for tissue (e.g., tendon and ligament) repair. The scaffold has improved surgical handling properties compared to the gelatinous consistency of the prior art HBDS system and retains the capability for delivering mesenchymal cells and controlling the release of growth factors. One application for the scaffold is mesenchymal stem cell (MSC) therapy for flexor tendon repair. The scaffold can deliver growth factors in a sustained manner, can be implanted for flexor tendon repair, is biocompatible, and is not cytotoxic. The growth factor delivery scaffold may also be used in the surgical repair of an injury to bone, muscle, cartilage, or other tissues.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Inventors: Stavros Thomopoulos, Shelly Sakiyama-Elbert, Matthew Silva, Richard Gelberman, Younan Xia, Andrea Schwartz, Jingwei Xie
  • Patent number: 8673323
    Abstract: A growth factor delivery scaffold combines a heparin/fibrin-based delivery system (HBDS) with a backbone based on polymer nanofibers for tissue (e.g., tendon and ligament) repair. The scaffold has improved surgical handling properties compared to the gelatinous consistency of the prior art HBDS system and retains the capability for delivering mesenchymal cells and controlling the release of growth factors. One application for the scaffold is mesenchymal stem cell (MSC) therapy for flexor tendon repair. The scaffold can deliver growth factors in a sustained manner, can be implanted for flexor tendon repair, is biocompatible, and is not cytotoxic. The growth factor delivery scaffold may also be used in the surgical repair of an injury to bone, muscle, cartilage, or other tissues.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: March 18, 2014
    Assignee: Washington University
    Inventors: Stavros Thomopoulos, Shelly Sakiyama-Elbert, Matthew Silva, Richard Gelberman, Younan Xia, Andrea Schwartz, Jingwei Xie
  • Publication number: 20130004541
    Abstract: A growth factor delivery scaffold combines a heparin/fibrin-based delivery system (HBDS) with a backbone based on polymer nanofibers for tissue (e.g., tendon and ligament) repair. The scaffold has improved surgical handling properties compared to the gelatinous consistency of the prior art HBDS system and retains the capability for delivering mesenchymal cells and controlling the release of growth factors. One application for the scaffold is mesenchymal stem cell (MSC) therapy for flexor tendon repair. The scaffold can deliver growth factors in a sustained manner, can be implanted for flexor tendon repair, is biocompatible, and is not cytotoxic. The growth factor delivery scaffold may also be used in the surgical repair of an injury to bone, muscle, cartilage, or other tissues.
    Type: Application
    Filed: January 5, 2012
    Publication date: January 3, 2013
    Applicant: WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: Stavros Thomopoulos, Shelly Sakiyama-Elbert, Matthew Silva, Richard Gelberman, Younan Xia, Andrea Schwartz, Jingwei Xie