Patents by Inventor Matthew Sinclair

Matthew Sinclair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220042784
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Application
    Filed: October 12, 2021
    Publication date: February 10, 2022
    Applicant: NINEPOINT MEDICAL, INC.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Patent number: 11175125
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: November 16, 2021
    Assignee: NINEPOINT MEDICAL, INC.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Publication number: 20210251343
    Abstract: Reel devices, systems, and related methods are disclosed. The reel devices are modular and include an automatic shift assembly that shifts to provide a mechanical advantage when used to tighten a cord. For instance, the reel devices are configured to provide a first drive ratio and automatically transition to a second drive ratio in response to a torque force. The reel devices include a drive assembly and a shift assembly. The drive assembly includes a cycloidal gear.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Inventors: John Martin, Brian Fletcher, Aaron Ambuske, Zachary West, Jay Barrett Willet, Ana Mirona Motoc, Dan Herbert, Hedvig Von Beetzen, Joseph Mahon, Jimmy Capra, Matthew Sinclair
  • Publication number: 20210252792
    Abstract: Described herein is an Intuitive Creation System for Additive Manufacturing (AM) Devices which automates the design and manufacturing process in order to minimize or eliminate the need to teach and train new users in the art of Additive Manufacturing (AM). This system and methodology allows anyone, with little to no technical know-how, to successfully operate an AM device to produce products that improve their quality of life, on demand, locally, and during events that cause disruption of traditional global manufacturing supply chains. Additionally, the described systems and methods also allow anyone to design and create products with little to no prior technical know-how. This is accomplished by integrating computational systems and processors into the physical device such that 3D model data can be interrupted and translated into actions by the AM device without the need for a highly trained operator or user.
    Type: Application
    Filed: May 3, 2021
    Publication date: August 19, 2021
    Inventor: Joseph Matthew Sinclair
  • Patent number: 11040493
    Abstract: Described herein is an Intuitive Creation System for Additive Manufacturing (AM) Devices which automates the design and manufacturing process in order to minimize or eliminate the need to teach and train new users in the art of Additive Manufacturing (AM). This system and methodology allows anyone, with little to no technical know-how, to successfully operate an AM device to produce products that improve their quality of life, on demand, locally, and during events that cause disruption of traditional global manufacturing supply chains. Additionally, the described systems and methods also allow anyone to design and create products with little to no prior technical know-how. This is accomplished by integrating computational systems and processors into the physical device such that 3D model data can be interrupted and translated into actions by the AM device without the need for a highly trained operator or user.
    Type: Grant
    Filed: November 29, 2020
    Date of Patent: June 22, 2021
    Inventor: Joseph Matthew Sinclair
  • Publication number: 20210170693
    Abstract: Described herein is an Intuitive Creation System for Additive Manufacturing (AM) Devices which automates the design and manufacturing process in order to minimize or eliminate the need to teach and train new users in the art of Additive Manufacturing (AM). This system and methodology allows anyone, with little to no technical know-how, to successfully operate an AM device to produce products that improve their quality of life, on demand, locally, and during events that cause disruption of traditional global manufacturing supply chains. Additionally, the described systems and methods also allow anyone to design and create products with little to no prior technical know-how. This is accomplished by integrating computational systems and processors into the physical device such that 3D model data can be interrupted and translated into actions by the AM device without the need for a highly trained operator or user.
    Type: Application
    Filed: November 29, 2020
    Publication date: June 10, 2021
    Inventor: Joseph Matthew Sinclair
  • Patent number: 10838150
    Abstract: A coupling interface arrangement is described for a photonic integrated circuit (PIC) device. The PIC includes an interface coupling surface having optical grating elements arranged to form optical output locations that produce corresponding light output beams. A coupling lens couples the light output beams into a conjugate plane at a far-field scene characterized by one or more optical aberrations that degrade optical resolution of the light outputs. The optical grating elements are configured to correct for the one or more optical aberrations.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 17, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Byrnes, Steven J. Spector, Francis J. Rogomentich, Matthew A. Sinclair
  • Patent number: 10807913
    Abstract: A polycrystalline diamond element includes a polycrystalline diamond table having a body of bonded diamond particles with interstitial regions. A first volume of the body includes an interstitial material and a second volume of the body has a lower concentration of interstitial material within the interstitial regions than the first volume. The polycrystalline diamond element includes an element face and a peripheral surface. The first volume is adjacent to a central portion of the element face and the second volume is adjacent to the peripheral surface. A method of processing a polycrystalline diamond element includes forming a concave region in the polycrystalline diamond element, exposing at least a portion of the concave region to a leaching solution, and removing at least a portion of the polycrystalline diamond material that was exposed to the leaching solution from the polycrystalline diamond element.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: October 20, 2020
    Assignee: US Synthetic Corporation
    Inventors: Joshua Adam Hawks, Ryan LeRoy Woodland, Jason Keith Wiggins, David Paul Miess, Mark Pehrson Chapman, Trevor Allen Olsen, Trent Neil Butcher, Michael James Gleason, Matthew Sinclair Brown, Julie Ann Kidd
  • Publication number: 20200257111
    Abstract: A multi channel beamsplitter system operating over a wide spectral band has high optical performance despite the fact that the incoming and/or exiting light is not collimated and its material is dispersive. This is achieved using wavefront compensators that are matched to the curvature of the wavefronts of the incoming and/or exiting light.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 13, 2020
    Inventors: Matthew A. Sinclair, Adam F. Kelsey, David A. Landis, Stephanie L. Golmon, Buddy Clemmer, Juha-Pekka Laine
  • Publication number: 20200192133
    Abstract: A tunable imaging system capable of capturing both broadband and narrow band images is disclosed. The narrow band selection is made possible by constructing a spectral filter with a series of Faraday rotators and polarizers. The dispersion in Faraday Effect discriminates different wavelengths, allowing only light around the desired wavelength to pass through the polarizers. The central wavelength and/or the bandwidth of the filter can be tuned by varying the magnetic field and/or rotating the polarizers.
    Type: Application
    Filed: June 27, 2019
    Publication date: June 18, 2020
    Inventors: Christine Wang, Matthew A. Sinclair
  • Patent number: 10641859
    Abstract: A star tracker includes a lens slice, a pixelated image sensor, an ephemeral database and a processor configured to estimate attitude, orientation and/or location of the star tracker based on an image of one or more celestial objects projected by the lens slice onto the pixelated image sensor. The lens slice is smaller and lighter than an optically comparable conventional lens, thereby making the star tracker less voluminous and less massive than conventional star trackers. A lens slice is elongated along one axis. Optical performance along the elongation axis is comparable to that of a conventional circular lens of equal diameter. Although optical performance along a width axis, perpendicular to the elongation axis, of a lens slice can be significantly worse than that of a conventional lens, use of two orthogonal lens slices provides adequate optical performance in both axes, and still saves volume and mass over a conventional lens.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: May 5, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Robin Mark Adrian Dawson, Daniel M. Meiser, Benjamin F. Lane, Eric T. Hoke, Matthew T. Jamula, Stephen P. Smith, Matthew A. Sinclair
  • Publication number: 20200136340
    Abstract: A LiDAR system includes an array of optical emitters, an objective lens optically coupling each optical emitter to a respective unique portion of a field of view, an optical switching network coupled between a laser and the array of optical emitters and a controller coupled to the optical switching network and configured to cause the optical switching network to route light from the laser to a sequence of the optical emitters according to a dynamically varying temporal pattern and to vary the temporal pattern in a way that reduces risk of eye injury from the laser light.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 30, 2020
    Inventors: Michael G. Moebius, Steven J. Spector, Steven J. Byrnes, Christopher Bessette, Scott Evan Lennox, Matthew A. Sinclair, Francis J. Rogomentich
  • Publication number: 20200103216
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Inventors: Eman NAMATI, Muhammad AL-QAISI, Matthew A. SINCLAIR, Benedikt GRAF, David VADER
  • Publication number: 20200004001
    Abstract: A multi-band/multi-polarization reflective or catadioptric optical system yields differing effective focal lengths (EFLs) per band/polarization. This approach could be used to create an imaging system, for example. In such case, a sensor (imager, spectrometer, diode, etc.) is located at the one or more focal planes. On the other hand, it could also be used to create a projecting system or hybrid projecting and imaging system by locating an emitter such as an LED, laser, etc.) at the image or focal plane. The system employs polarizers and/or dichroic coatings nano patterns to create different focal lengths and/or fields of view using the same mirrors and/or lenses by, for example, including at least one dichroic coating optically in front of at least one additional mirror to separately reflect the different bands or polarizations.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Matthew A. Sinclair, Juha-Pekka Laine
  • Publication number: 20200005097
    Abstract: A potentially small, gimballed, multi-sensor system employs a shared aperture for at least some of the image sensors. Applications include intelligence, surveillance, target acquisition and reconnaissance (ISTAR), and guiding autonomous vehicles. The system can actively blend images from multiple spectral bands for clarity and interpretability, provide remote identification of objects and material, provide anomaly detection, control lasers and opto-mechanics for image quality, and use shared aperture using folded optics.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Matthew A. Sinclair, Adam Kelsey, Paul Aaron Bohn, Stephanie L. Golmon, Francis J. Rogomentich, Juha-Pekka Laine, Buddy A. Clemmer, David A. Landis
  • Publication number: 20200004006
    Abstract: An optical system such as an imaging system, projecting system or combined imaging and projecting system, has complex dielectric coatings and/or reflecting polarizers to separate multiple spectral bands and/or polarizations on one or more of the system's curved mirrors.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Matthew A. Sinclair, Paul Aaron Bohn, Juha-Pekka Laine, Francis J. Rogomentich
  • Patent number: 10511782
    Abstract: A configurable optical baffling includes an outer housing positioned above a fixed platform and has an outer opening. An inner housing is layered below the outer housing and above the fixed platform and has inner openings and inner shaded sections. The outer opening includes an elongated sensing boresight having a longitudinal boresight axis and opposing ends. An outer boresight opening end is open to the light from the scene, and a reflecting end has a flat fold mirror that is configured to reflect light from the outer boresight opening in towards the inner housing so that the optical baffling is configured to receive light from the scene solely from a single look direction along the boresight axis, the single look direction being changeable by rotation of the outer housing.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 17, 2019
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Matthew T. Jamula, Matthew A. Sinclair, Benjamin F. Lane, Adam Parolin, Adam Kelsey
  • Patent number: 10495442
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 3, 2019
    Assignee: NinePoint Medical, Inc.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Publication number: 20190342500
    Abstract: A configurable optical baffling includes an outer housing positioned above a fixed platform and has an outer opening. An inner housing is layered below the outer housing and above the fixed platform and has inner openings and inner shaded sections. The outer opening includes an elongated sensing boresight having a longitudinal boresight axis and opposing ends. An outer boresight opening end is open to the light from the scene, and a reflecting end has a flat fold mirror that is configured to reflect light from the outer boresight opening in towards the inner housing so that the optical baffling is configured to receive light from the scene solely from a single look direction along the boresight axis, the single look direction being changeable by rotation of the outer housing.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Matthew T. Jamula, Matthew A. Sinclair, Benjamin F. Lane, Adam Parolin, Adam Kelsey
  • Patent number: 10437698
    Abstract: Described herein is a Leader-Follower Additive Manufacturing (AM) system which controls multiple AM Devices (3D Printers) simultaneously in order to minimize human monitoring and control during the mass manufacture of AM products. This is accomplished by combining individual AM device closed-loop feedback control with the ability for AM devices to communicate feedback loop data to other AM devices. The communication of feedback loop data between AM devices during the mass fabrication of AM components improves AM process reliability and repeatability. Within the system, AM devices are able to assume the roles of Leaders or Followers; Leader AM devices lead the Follower AM devices during the fabrication of multiple AM products. If errors occur during the fabrication of the AM products, individual AM devices are able to create and implement solutions that solve fabrication errors and communicate that data with the other AM devices for present and future AM fabrication efforts.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: October 8, 2019
    Inventor: Joseph Matthew Sinclair