Patents by Inventor Matthew T. Kuhn

Matthew T. Kuhn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903605
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 20, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11883059
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: January 30, 2024
    Assignee: Cilag GmbH International
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Brooks
  • Publication number: 20240000521
    Abstract: A method for adjusting the operation of a clip applier using machine learning in a surgical suite is disclosed. The method comprises gathering data during surgical procedures, wherein the surgical procedures include the use of a clip applier comprising a crimping drive configured to be mechanically advanced through a crimping stroke. The method further comprises analyzing the gathered data to determine an appropriate operational adjustment of the clip applier and adjusting the operation of the clip applier to improve the operation of the clip applier.
    Type: Application
    Filed: September 13, 2023
    Publication date: January 4, 2024
    Inventors: Michael J. Stokes, Frederick E. Shelton, IV, Chester O. Baxter, III, Jason L. Harris, John E. Brady, Matthew T. Kuhn, Jeffery D. Bruns, Alexander R. Cuti, Andrew C. Deck, Bradley A. Arnold
  • Patent number: 11801098
    Abstract: A method for adjusting the operation of a clip applier using machine learning in a surgical suite is disclosed. The method comprises gathering data during surgical procedures, wherein the surgical procedures include the use of a clip applier comprising a crimping drive configured to be mechanically advanced through a crimping stroke. The method further comprises analyzing the gathered data to determine an appropriate operational adjustment of the clip applier and adjusting the operation of the clip applier to improve the operation of the clip applier.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: October 31, 2023
    Assignee: Cilag GmbH International
    Inventors: Michael J. Stokes, Frederick E. Shelton, IV, Chester O. Baxter, III, Jason L. Harris, John E. Brady, Matthew T. Kuhn, Jeffery D. Bruns, Alexander R. Cuti, Andrew C. Deck, Bradley A. Arnold
  • Patent number: 11160578
    Abstract: An ultrasonic surgical instrument that includes an ultrasonic transducer, a handle assembly supporting the ultrasonic transducer, a clamp arm assembly, and a mechanical lockout assembly. The handle assembly includes a housing and an ultrasonic blade acoustically coupled with the ultrasonic transducer. The clamp arm assembly includes a clamp arm. The mechanical lockout assembly is configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the handle assembly and the clamp arm assembly are not completely coupled together and the operator is physically prevented from activating the instrument using an operator input feature. In the unlocked configuration, the clamp arm assembly and the shaft assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: November 2, 2021
    Assignee: Cilag GmbH International
    Inventors: John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Matthew T. Kuhn, Cameron D. McLain, Candice Otrembiak
  • Publication number: 20210259725
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, JR., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11076881
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 3, 2021
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Waters, Fajian Zhang
  • Publication number: 20210212720
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Application
    Filed: February 4, 2021
    Publication date: July 15, 2021
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Brooks
  • Patent number: 11051841
    Abstract: An ultrasonic surgical instrument that includes a handle assembly including at least one user input feature; an ultrasonic transducer supported by the handle assembly, a shaft assembly configured to removably couple with the handle assembly, and a mechanical lockout assembly. The shaft assembly includes a distal end portion. The shaft assembly further includes an end effector extending distally from the distal end portion, and an ultrasonic waveguide configured to be acoustically coupled with the ultrasonic transducer. The mechanical lockout assembly is configured to move between at least an unlocked configuration and a locked configuration. In the locked configuration, the handle assembly and the shaft assembly are only partially coupled together physically preventing the user from activating the instrument using the user input feature.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 6, 2021
    Assignee: Ethicon LLC
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Andrew S. Meyers, Candice Otrembiak, Grace E. Waters
  • Patent number: 11026713
    Abstract: Surgical clip appliers are disclosed comprising a plurality of clips which are stored in a compressed state. When a stored clip is moved into the crimping chamber of the surgical clip applier, the clip can assume a configuration which is different than its stored configuration before it is crimped.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 8, 2021
    Assignee: Cilag GmbH International
    Inventors: Michael J. Stokes, Frederick E. Shelton, IV, Chester O. Baxter, III, Jason L. Harris, John E. Brady, Matthew T. Kuhn, Jeffery D. Bruns, Alexander R. Cuti, Andrew C. Deck
  • Patent number: 10945755
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 16, 2021
    Assignee: Ethicon LLC
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Waters
  • Publication number: 20190314056
    Abstract: An ultrasonic surgical instrument that includes a handle assembly including at least one user input feature; an ultrasonic transducer supported by the handle assembly, a shaft assembly configured to removably couple with the handle assembly, and a mechanical lockout assembly. The shaft assembly includes a distal end portion. The shaft assembly further includes an end effector extending distally from the distal end portion, and an ultrasonic waveguide configured to be acoustically coupled with the ultrasonic transducer. The mechanical lockout assembly is configured to move between at least an unlocked configuration and a locked configuration. In the locked configuration, the handle assembly and the shaft assembly are only partially coupled together physically preventing the user from activating the instrument using the user input feature.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 17, 2019
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Andrew S. Meyers, Candice Otrembiak, Grace E. Waters
  • Publication number: 20190314055
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 17, 2019
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Waters
  • Publication number: 20190314054
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 17, 2019
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, JR., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Waters, Fajian Zhang
  • Publication number: 20190314050
    Abstract: An ultrasonic surgical instrument that includes an ultrasonic transducer, a handle assembly supporting the ultrasonic transducer, a clamp arm assembly, and a mechanical lockout assembly. The handle assembly includes a housing and an ultrasonic blade acoustically coupled with the ultrasonic transducer. The clamp arm assembly includes a clamp arm. The mechanical lockout assembly is configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the handle assembly and the clamp arm assembly are not completely coupled together and the operator is physically prevented from activating the instrument using an operator input feature. In the unlocked configuration, the clamp arm assembly and the shaft assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 17, 2019
    Inventors: John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Matthew T. Kuhn, Cameron D. McLain, Candice Otrembiak
  • Publication number: 20190125347
    Abstract: Surgical clip appliers are disclosed comprising a plurality of clips which are stored in a compressed state. When a stored clip is moved into the crimping chamber of the surgical clip applier, the clip can assume a configuration which is different than its stored configuration before it is crimped.
    Type: Application
    Filed: August 24, 2018
    Publication date: May 2, 2019
    Inventors: Michael J. Stokes, Frederick E. Shelton, IV, Chester O. Baxter, III, Jason L. Harris, John E. Brady, Matthew T. Kuhn, Jeffery D. Bruns, Alexander R. Cuti, Andrew C. Deck
  • Publication number: 20190125454
    Abstract: A method for adjusting the operation of a clip applier using machine learning in a surgical suite is disclosed. The method comprises gathering data during surgical procedures, wherein the surgical procedures include the use of a clip applier comprising a crimping drive configured to be mechanically advanced through a crimping stroke. The method further comprises analyzing the gathered data to determine an appropriate operational adjustment of the clip applier and adjusting the operation of the clip applier to improve the operation of the clip applier.
    Type: Application
    Filed: October 26, 2018
    Publication date: May 2, 2019
    Inventors: Michael J. Stokes, Frederick E. Shelton, IV, Chester O. Baxter, III, Jason L. Harris, John E. Brady, Matthew T. Kuhn, Jeffery D. Bruns, Alexander R. Cuti, Andrew C. Deck, Bradley A. Arnold