Patents by Inventor Matthew T Waks
Matthew T Waks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11018717Abstract: Apparatus and method for trapping RF on shields of a multiply shielded RF cable. In some embodiments, the RF trap shorts an outer conductor shield to an inner shield conductor of the cable successively at selected locations along an end length of the shield conductors. Some embodiments provide an RF-trap apparatus for blocking stray signals on a shielded RF cable that has two or more concentric peripheral shield conductors separated from one another by one or more electrically insulating layers, and at least one inner conductor for carrying RF signals. The RF trap apparatus includes: a first housing; and a plurality of projections configured be coupled to the first housing and to move to selectively electrically connect an outer shield conductor to an inner shield conductor by a pierce operation on the shielded RF cable.Type: GrantFiled: August 7, 2019Date of Patent: May 25, 2021Assignee: Life Services, LLCInventor: Matthew T. Waks
-
Patent number: 10835149Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).Type: GrantFiled: June 19, 2018Date of Patent: November 17, 2020Assignee: Life Services, LLCInventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
-
Patent number: 10827948Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil loops” in each of a plurality of coil parts, each coil part having a subset of the total number of coil loops. In some embodiments, a first base part, optionally having no coils, is used to provide support of the plurality of coil parts, wherein the plurality of coil parts include a second part holding back-of-the-head coil loops, a third part holding right-side-of-the-head coil loops, a fourth part holding right-side-of-the-head coil loops, and a fifth part holding top-of-the-head coil loops. In some embodiments, the system provides for repeatable positioning, frequency tuning, and impedance matching such that experimental conditions can be replicated for later examinations of each of a plurality of patients having differing impacts on positioning, tuning and matching of the various coil parts.Type: GrantFiled: November 25, 2016Date of Patent: November 10, 2020Assignee: Life Services, LLCInventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
-
Patent number: 10641846Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.Type: GrantFiled: May 24, 2019Date of Patent: May 5, 2020Assignee: Life Services LLCInventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
-
Patent number: 10627463Abstract: Apparatus and method that are more efficient and flexible, and obtain and connect high-power RF transmit signals (TX) to RF-coil devices in an MR machine or other devices and simultaneously receive signals (RX) and separate net receive signals NRX) of interest by subtracting or filtering to remove the subtractable portion of the transmit signal (STX) from the RX and preamplifying the NRX and signal processing the preamplified NRX. In some embodiments, signal processing further removes artifacts of the transmitted signal, e.g., by digitizing the NRX signal, storing the digitized NRX signal in a memory, and performing digital signal processing. In some embodiments, the present invention also includes pre-distorting the TX signals in order to be better able to identify and/or remove the remaining artifacts of the transmitted signal from the NRX signal. This solution also applies to other high-power RF-transmit-antennae signals.Type: GrantFiled: August 4, 2015Date of Patent: April 21, 2020Assignee: Life Services, LLCInventors: Scott M. Schillak, John Thomas Vaughan, Charles A. Lemaire, Matthew T. Waks
-
Publication number: 20190353721Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.Type: ApplicationFiled: May 24, 2019Publication date: November 21, 2019Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
-
Patent number: 10324146Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.Type: GrantFiled: January 12, 2017Date of Patent: June 18, 2019Assignee: Life Services, LLCInventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
-
Patent number: 10281534Abstract: A method and apparatus for transmitting and receiving RF signals suitable for MRI and/or MRS from MR “coils” (antennae) that are arranged in an array next to a tissue-sample-slice holder that constrains the front, back, and edges of the tissue sample and is configured to rotate in a “roll” direction (about an axis parallel to the main DC magnetic field) and optionally also rotate in a pitch direction (at varying angles up and down, left-to-right, or both, relative to the roll axis and thus to the main DC magnetic field); the system optionally includes temperature control (heat and/or cooling), an optical grid that is marked or etched into a cover glass that holds the sample (in some embodiments, the grid is visible in the MRI images as well), an electrical and/or optical stimulation means for delivering stimulation Some embodiments combine optical image data with MR image data.Type: GrantFiled: March 20, 2015Date of Patent: May 7, 2019Assignee: Life Services, LLCInventors: Brandon J. Tramm, Scott M. Schillak, Matthew T. Waks, Charles A. Lemaire
-
Patent number: 10200006Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.Type: GrantFiled: November 29, 2016Date of Patent: February 5, 2019Assignee: Life Services, LLCInventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
-
Publication number: 20190021628Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).Type: ApplicationFiled: June 19, 2018Publication date: January 24, 2019Inventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
-
Patent number: 9999370Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).Type: GrantFiled: November 21, 2017Date of Patent: June 19, 2018Assignee: Life Services, LLCInventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
-
Publication number: 20180070854Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).Type: ApplicationFiled: November 21, 2017Publication date: March 15, 2018Inventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
-
Patent number: 9820676Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).Type: GrantFiled: November 19, 2014Date of Patent: November 21, 2017Assignee: Life Services, LLCInventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
-
Publication number: 20170299670Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.Type: ApplicationFiled: January 12, 2017Publication date: October 19, 2017Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
-
Publication number: 20170077895Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.Type: ApplicationFiled: November 29, 2016Publication date: March 16, 2017Inventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
-
Patent number: 9509271Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.Type: GrantFiled: January 19, 2016Date of Patent: November 29, 2016Assignee: Life Services, LLCInventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
-
Publication number: 20160134252Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.Type: ApplicationFiled: January 19, 2016Publication date: May 12, 2016Inventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
-
Publication number: 20160036408Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.Type: ApplicationFiled: October 13, 2015Publication date: February 4, 2016Inventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
-
Patent number: 9240765Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.Type: GrantFiled: October 13, 2015Date of Patent: January 19, 2016Assignee: Life Services, LLCInventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
-
Publication number: 20150338478Abstract: Apparatus and method that are more efficient and flexible, and obtain and connect high-power RF transmit signals (TX) to RF-coil devices in an MR machine or other devices and simultaneously receive signals (RX) and separate net receive signals NRX) of interest by subtracting or filtering to remove the subtractable portion of the transmit signal (STX) from the RX and preamplifying the NRX and signal processing the preamplified NRX. In some embodiments, signal processing further removes artifacts of the transmitted signal, e.g., by digitizing the NRX signal, storing the digitized NRX signal in a memory, and performing digital signal processing. In some embodiments, the present invention also includes pre-distorting the TX signals in order to be better able to identify and/or remove the remaining artifacts of the transmitted signal from the NRX signal. This solution also applies to other high-power RF-transmit-antennae signals.Type: ApplicationFiled: August 4, 2015Publication date: November 26, 2015Inventors: Scott M. Schillak, John Thomas Vaughan, JR., Charles A. Lemaire, Matthew T. Waks