Patents by Inventor Matthew Thomas Brown
Matthew Thomas Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11299614Abstract: Maleate polyester polyols and coatings made from the polyols are disclosed. The polyester polyols comprise recurring units of (a) a digested thermoplastic polyester or an aromatic dicarboxylate source; (b) a diol; (c) 5 to 95 mole % of an ?,?-unsaturated monomer; and (d) 5 to 95 mole % of adipic acid, succinic acid, or a mixture thereof, where the mole % ranges for (c) and (d) are based on the combined molar amounts of (c) and (d). The polyols have hydroxyl numbers within the range of 25 to 450 mg KOH/g, an average of 0.5 to 2.5 reactive unsaturation sites per molecule, and a viscosity less than 1500 cP at 75° C. The polyols are thermally curable or energy-curable. Coatings made from the maleate polyester polyols are also described. Traditional coatings based on polyisocyanates and/or (meth)acrylates can be made, in some cases with improved properties and reduced reliance on the acrylate or isocyanate-based components.Type: GrantFiled: August 22, 2019Date of Patent: April 12, 2022Assignee: CARLISLE CONSTRUCTION MATERIALS, LLCInventors: Matthew Thomas Brown, Michelle Samson, Gary Spilman, Rick Tabor, Kevin Anthony Rogers
-
Publication number: 20200002524Abstract: Maleate polyester polyols and coatings made from the polyols are disclosed. The polyester polyols comprise recurring units of (a) a digested thermoplastic polyester or an aromatic dicarboxylate source; (b) a diol; (c) 5 to 95 mole % of an ?,?-unsaturated monomer; and (d) 5 to 95 mole % of adipic acid, succinic acid, or a mixture thereof, where the mole % ranges for (c) and (d) are based on the combined molar amounts of (c) and (d). The polyols have hydroxyl numbers within the range of 25 to 450 mg KOH/g, an average of 0.5 to 2.5 reactive unsaturation sites per molecule, and a viscosity less than 1500 cP at 75° C. The polyols are thermally curable or energy-curable. Coatings made from the maleate polyester polyols are also described. Traditional coatings based on polyisocyanates and/or (meth)acrylates can be made, in some cases with improved properties and reduced reliance on the acrylate or isocyanate-based components.Type: ApplicationFiled: August 22, 2019Publication date: January 2, 2020Inventors: Matthew Thomas Brown, Michelle Samson, Gary Spilman, Rick Tabor, Kevin Anthony Rogers
-
Patent number: 10442268Abstract: An axle assembly includes a first rail assembly, a second rail assembly and an open-section twist beam connected to the first rail assembly and the second rail assembly. The twist beam includes an upper wall, a lower wall and rear wall wherein the upper wall and the lower wall are connected by the rear wall to define an open portion of the twist beam where the upper wall and the lower wall are separated by a vertical distance. The open portion of the twist beam is forward facing. The axle assembly further includes a torsion bar that extends through and is connected within the open portion of the twist beam.Type: GrantFiled: June 16, 2017Date of Patent: October 15, 2019Assignee: MAHINDRA N.A. TECH CENTERInventors: Vidyadhar Vithal Katkar, Matthew Thomas Brown
-
Publication number: 20180361817Abstract: An axle assembly includes a first rail assembly, a second rail assembly and an open-section twist beam connected to the first rail assembly and the second rail assembly. The twist beam includes an upper wall, a lower wall and rear wall wherein the upper wall and the lower wall are connected by the rear wall to define an open portion of the twist beam where the upper wall and the lower wall are separated by a vertical distance. The open portion of the twist beam is forward facing. The axle assembly further includes a torsion bar that extends through and is connected within the open portion of the twist beam.Type: ApplicationFiled: June 16, 2017Publication date: December 20, 2018Inventors: Vidyadhar Vithal KATKAR, Matthew Thomas BROWN
-
Publication number: 20180237573Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.Type: ApplicationFiled: April 23, 2018Publication date: August 23, 2018Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
-
Patent number: 9975388Abstract: An upper mount assembly for a shock absorber of an automotive vehicle. The upper mount assembly comprises a top plate and a bottom plate spaced from the top plate. The top and bottom plates are fixedly secured to the vehicle and operatively coupled to the shock absorber. An inner hub is seated between the top and bottom plate. A damper is supported by the inner hub between the top and bottom plate for cooperating with the shock absorber. The damper includes a plurality of spaced apart grooves formed therein for selectively varying the spring rate of the damper to absorb loads from the shock absorber.Type: GrantFiled: November 13, 2015Date of Patent: May 22, 2018Assignee: Mahindra Vehicle Manufacturing LimitedInventor: Matthew Thomas Brown
-
Patent number: 9951171Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.Type: GrantFiled: October 14, 2015Date of Patent: April 24, 2018Assignee: Resinate Materials Group, Inc.Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
-
Patent number: 9896540Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.Type: GrantFiled: July 8, 2016Date of Patent: February 20, 2018Assignee: Resinate Materials Group, Inc.Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
-
Patent number: 9732026Abstract: The presently disclosed and/or claimed inventive concept(s) relates generally to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymers and methods thereof. More specifically, the presently disclosed and/or claimed inventive concept(s) relates to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymer obtained from, for example but not by way of limitation, waste products, such as beverage containers made from polyethylene terephthalate (PET). The oligomeric reaction products can, in one embodiment, be used as a starting material for polyurethanes. The presently disclosed and/or claimed inventive concept(s) also relates to processes for producing oligomeric reaction products from the depolymerization of polyethylene terephthalate.Type: GrantFiled: December 17, 2013Date of Patent: August 15, 2017Assignee: Resinate Technologies, Inc.Inventors: Rick Tabor, Daniel James Seyer, Kristopher M Felice, Adam W Emerson, Matthew Thomas Brown, Kyle Harris McGrath, Mickey Kellerman, Kevin Anthony Rogers, Jack Rogers Kovsky, Matthew James Beatty, Eric David Vrabel
-
Publication number: 20170029561Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.Type: ApplicationFiled: July 8, 2016Publication date: February 2, 2017Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
-
Publication number: 20160185173Abstract: An upper mount assembly for a shock absorber of an automotive vehicle. The upper mount assembly comprises a top plate and a bottom plate spaced from the top plate. The top and bottom plates are fixedly secured to the vehicle and operatively coupled to the shock absorber. An inner hub is seated between the top and bottom plate. A damper is supported by the inner hub between the top and bottom plate for cooperating with the shock absorber. The damper includes a plurality of spaced apart grooves formed therein for selectively varying the spring rate of the damper to absorb loads from the shock absorber.Type: ApplicationFiled: November 13, 2015Publication date: June 30, 2016Inventor: Matthew Thomas Brown
-
Publication number: 20160053058Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.Type: ApplicationFiled: October 14, 2015Publication date: February 25, 2016Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
-
Publication number: 20150315325Abstract: The presently disclosed and/or claimed inventive concept(s) relates generally to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymers and methods thereof. More specifically, the presently disclosed and/or claimed inventive concept(s) relates to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymer obtained from, for example but not by way of limitation, waste products, such as beverage containers made from polyethylene terephthalate (PET). The oligomeric reaction products can, in one embodiment, be used as a starting material for polyurethanes. The presently disclosed and/or claimed inventive concept(s) also relates to processes for producing oligomeric reaction products from the depolymerization of polyethylene terephthalate.Type: ApplicationFiled: December 17, 2013Publication date: November 5, 2015Inventors: Rick L. Tabor, Daniel James Seyer, Kristopher M Felice, Adam W. Emerson, Matthew Thomas Brown, Kyle Harris McGrath, Mickey Kellerman, Kevin Anthony Rogers, Jack Rogers Kovsky, Matthew James Beatty, Eric David Vrabel