Patents by Inventor Matthew Thomas Brown

Matthew Thomas Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11299614
    Abstract: Maleate polyester polyols and coatings made from the polyols are disclosed. The polyester polyols comprise recurring units of (a) a digested thermoplastic polyester or an aromatic dicarboxylate source; (b) a diol; (c) 5 to 95 mole % of an ?,?-unsaturated monomer; and (d) 5 to 95 mole % of adipic acid, succinic acid, or a mixture thereof, where the mole % ranges for (c) and (d) are based on the combined molar amounts of (c) and (d). The polyols have hydroxyl numbers within the range of 25 to 450 mg KOH/g, an average of 0.5 to 2.5 reactive unsaturation sites per molecule, and a viscosity less than 1500 cP at 75° C. The polyols are thermally curable or energy-curable. Coatings made from the maleate polyester polyols are also described. Traditional coatings based on polyisocyanates and/or (meth)acrylates can be made, in some cases with improved properties and reduced reliance on the acrylate or isocyanate-based components.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: April 12, 2022
    Assignee: CARLISLE CONSTRUCTION MATERIALS, LLC
    Inventors: Matthew Thomas Brown, Michelle Samson, Gary Spilman, Rick Tabor, Kevin Anthony Rogers
  • Publication number: 20200002524
    Abstract: Maleate polyester polyols and coatings made from the polyols are disclosed. The polyester polyols comprise recurring units of (a) a digested thermoplastic polyester or an aromatic dicarboxylate source; (b) a diol; (c) 5 to 95 mole % of an ?,?-unsaturated monomer; and (d) 5 to 95 mole % of adipic acid, succinic acid, or a mixture thereof, where the mole % ranges for (c) and (d) are based on the combined molar amounts of (c) and (d). The polyols have hydroxyl numbers within the range of 25 to 450 mg KOH/g, an average of 0.5 to 2.5 reactive unsaturation sites per molecule, and a viscosity less than 1500 cP at 75° C. The polyols are thermally curable or energy-curable. Coatings made from the maleate polyester polyols are also described. Traditional coatings based on polyisocyanates and/or (meth)acrylates can be made, in some cases with improved properties and reduced reliance on the acrylate or isocyanate-based components.
    Type: Application
    Filed: August 22, 2019
    Publication date: January 2, 2020
    Inventors: Matthew Thomas Brown, Michelle Samson, Gary Spilman, Rick Tabor, Kevin Anthony Rogers
  • Patent number: 10442268
    Abstract: An axle assembly includes a first rail assembly, a second rail assembly and an open-section twist beam connected to the first rail assembly and the second rail assembly. The twist beam includes an upper wall, a lower wall and rear wall wherein the upper wall and the lower wall are connected by the rear wall to define an open portion of the twist beam where the upper wall and the lower wall are separated by a vertical distance. The open portion of the twist beam is forward facing. The axle assembly further includes a torsion bar that extends through and is connected within the open portion of the twist beam.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 15, 2019
    Assignee: MAHINDRA N.A. TECH CENTER
    Inventors: Vidyadhar Vithal Katkar, Matthew Thomas Brown
  • Publication number: 20180361817
    Abstract: An axle assembly includes a first rail assembly, a second rail assembly and an open-section twist beam connected to the first rail assembly and the second rail assembly. The twist beam includes an upper wall, a lower wall and rear wall wherein the upper wall and the lower wall are connected by the rear wall to define an open portion of the twist beam where the upper wall and the lower wall are separated by a vertical distance. The open portion of the twist beam is forward facing. The axle assembly further includes a torsion bar that extends through and is connected within the open portion of the twist beam.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 20, 2018
    Inventors: Vidyadhar Vithal KATKAR, Matthew Thomas BROWN
  • Publication number: 20180237573
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
  • Patent number: 9975388
    Abstract: An upper mount assembly for a shock absorber of an automotive vehicle. The upper mount assembly comprises a top plate and a bottom plate spaced from the top plate. The top and bottom plates are fixedly secured to the vehicle and operatively coupled to the shock absorber. An inner hub is seated between the top and bottom plate. A damper is supported by the inner hub between the top and bottom plate for cooperating with the shock absorber. The damper includes a plurality of spaced apart grooves formed therein for selectively varying the spring rate of the damper to absorb loads from the shock absorber.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: May 22, 2018
    Assignee: Mahindra Vehicle Manufacturing Limited
    Inventor: Matthew Thomas Brown
  • Patent number: 9951171
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 24, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Patent number: 9896540
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Patent number: 9732026
    Abstract: The presently disclosed and/or claimed inventive concept(s) relates generally to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymers and methods thereof. More specifically, the presently disclosed and/or claimed inventive concept(s) relates to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymer obtained from, for example but not by way of limitation, waste products, such as beverage containers made from polyethylene terephthalate (PET). The oligomeric reaction products can, in one embodiment, be used as a starting material for polyurethanes. The presently disclosed and/or claimed inventive concept(s) also relates to processes for producing oligomeric reaction products from the depolymerization of polyethylene terephthalate.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: August 15, 2017
    Assignee: Resinate Technologies, Inc.
    Inventors: Rick Tabor, Daniel James Seyer, Kristopher M Felice, Adam W Emerson, Matthew Thomas Brown, Kyle Harris McGrath, Mickey Kellerman, Kevin Anthony Rogers, Jack Rogers Kovsky, Matthew James Beatty, Eric David Vrabel
  • Publication number: 20170029561
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Application
    Filed: July 8, 2016
    Publication date: February 2, 2017
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
  • Publication number: 20160185173
    Abstract: An upper mount assembly for a shock absorber of an automotive vehicle. The upper mount assembly comprises a top plate and a bottom plate spaced from the top plate. The top and bottom plates are fixedly secured to the vehicle and operatively coupled to the shock absorber. An inner hub is seated between the top and bottom plate. A damper is supported by the inner hub between the top and bottom plate for cooperating with the shock absorber. The damper includes a plurality of spaced apart grooves formed therein for selectively varying the spring rate of the damper to absorb loads from the shock absorber.
    Type: Application
    Filed: November 13, 2015
    Publication date: June 30, 2016
    Inventor: Matthew Thomas Brown
  • Publication number: 20160053058
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 25, 2016
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
  • Publication number: 20150315325
    Abstract: The presently disclosed and/or claimed inventive concept(s) relates generally to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymers and methods thereof. More specifically, the presently disclosed and/or claimed inventive concept(s) relates to oligomeric reaction products formed by the depolymerization of polyethylene terephthalate polymer obtained from, for example but not by way of limitation, waste products, such as beverage containers made from polyethylene terephthalate (PET). The oligomeric reaction products can, in one embodiment, be used as a starting material for polyurethanes. The presently disclosed and/or claimed inventive concept(s) also relates to processes for producing oligomeric reaction products from the depolymerization of polyethylene terephthalate.
    Type: Application
    Filed: December 17, 2013
    Publication date: November 5, 2015
    Inventors: Rick L. Tabor, Daniel James Seyer, Kristopher M Felice, Adam W. Emerson, Matthew Thomas Brown, Kyle Harris McGrath, Mickey Kellerman, Kevin Anthony Rogers, Jack Rogers Kovsky, Matthew James Beatty, Eric David Vrabel