Patents by Inventor Matthew Tyler Cornick

Matthew Tyler Cornick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402493
    Abstract: A method for determining surface characteristics is disclosed. The method may include transmitting a surface penetrating radar (SPR) signal towards a surface from a SPR system. The method may also include receiving a response signal at the SPR system. The response signal may include, at least in part, a reflection of the SPR signal from a surface region associated with the surface. The method may further include measuring at least one of an intensity and a phase of the response signal. The method my additionally include determining, based at least in part on the at least one of the intensity and the phase of the response signal, a surface characteristic of the surface.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: August 2, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Publication number: 20200355821
    Abstract: A method for determining surface characteristics is disclosed. The method may include transmitting a surface penetrating radar (SPR) signal towards a surface from a SPR system. The method may also include receiving a response signal at the SPR system. The response signal may include, at least in part, a reflection of the SPR signal from a surface region associated with the surface. The method may further include measuring at least one of an intensity and a phase of the response signal. The method my additionally include determining, based at least in part on the at least one of the intensity and the phase of the response signal, a surface characteristic of the surface.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 12, 2020
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Patent number: 10746867
    Abstract: A method for determining surface characteristics is disclosed. The method may include transmitting a surface penetrating radar (SPR) signal towards a surface from a SPR system. The method may also include receiving a response signal at the SPR system. The response signal may include, at least in part, a reflection of the SPR signal from a surface region associated with the surface. The method may further include measuring at least one of an intensity and a phase of the response signal. The method my additionally include determining, based at least in part on the at least one of the intensity and the phase of the response signal, a surface characteristic of the surface.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: August 18, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Patent number: 10725171
    Abstract: A method and a surface penetrating radar (SPR) system for localization of a vehicle are disclosed. The method includes transmitting a radar signal having a first frequency into a subsurface region adjacent to a vehicle. A first set of SPR images of a first subsurface volume within the subsurface region is acquired and location data for the vehicle are determined from the first set of SPR images. A second radar signal having a frequency that is greater than the first frequency is transmitted into the subsurface region and a second set of SPR images of a second subsurface volume within the subsurface region is acquired. The second subsurface volume at least partially overlaps the first subsurface volume. Location data are determined from the second set of SPR images at a greater resolution than the location data determined from the first set of SPR images.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 28, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Patent number: 10663579
    Abstract: A method for extending a surface penetrating radar (SPR) footprint for performing localization with an SPR system is disclosed. The method may include may include transmitting at least one SPR signal from at least one SPR transmit element. The method may further include receiving a response signal via at least two SPR receive elements, the response signal including, at least in part, a reflection of the SPR signal from an object. The method may also include determining that the object is in a region of interest outside a footprint of the SPR system based on a difference in phase at which the response signal is received at the at least two SPR receive elements. The method may additionally include performing localization of a vehicle using the SPR system based at least in part on the object.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: May 26, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Publication number: 20180224540
    Abstract: A method for extending a surface penetrating radar (SPR) footprint for performing localization with an SPR system is disclosed. The method may include may include transmitting at least one SPR signal from at least one SPR transmit element. The method may further include receiving a response signal via at least two SPR receive elements, the response signal including, at least in part, a reflection of the SPR signal from an object. The method may also include determining that the object is in a region of interest outside a footprint of the SPR system based on a difference in phase at which the response signal is received at the at least two SPR receive elements. The method may additionally include performing localization of a vehicle using the SPR system based at least in part on the object.
    Type: Application
    Filed: January 29, 2018
    Publication date: August 9, 2018
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Publication number: 20180217251
    Abstract: A method and a surface penetrating radar (SPR) system for localization of a vehicle are disclosed. The method includes transmitting a radar signal having a first frequency into a subsurface region adjacent to a vehicle. A first set of SPR images of a first subsurface volume within the subsurface region is acquired and location data for the vehicle are determined from the first set of SPR images. A second radar signal having a frequency that is greater than the first frequency is transmitted into the subsurface region and a second set of SPR images of a second subsurface volume within the subsurface region is acquired. The second subsurface volume at least partially overlaps the first subsurface volume. Location data are determined from the second set of SPR images at a greater resolution than the location data determined from the first set of SPR images.
    Type: Application
    Filed: December 4, 2017
    Publication date: August 2, 2018
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Publication number: 20180217231
    Abstract: A method for determining surface characteristics is disclosed. The method may include transmitting a surface penetrating radar (SPR) signal towards a surface from a SPR system. The method may also include receiving a response signal at the SPR system. The response signal may include, at least in part, a reflection of the SPR signal from a surface region associated with the surface. The method may further include measuring at least one of an intensity and a phase of the response signal. The method my additionally include determining, based at least in part on the at least one of the intensity and the phase of the response signal, a surface characteristic of the surface.
    Type: Application
    Filed: January 29, 2018
    Publication date: August 2, 2018
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick
  • Publication number: 20150293219
    Abstract: Described are a method and system for detecting and locating changes in an underground region. Changes are detected using a mobile coherent change detection ground penetrating radar (GPR). The GPR system is located on a mobile platform that makes two more measurement passes over the same route to acquire GPR images of an underground region at different times. A lateral offset between the GPR images for the two different times is determined and applied to one of the GPR images to generate a GPR shifted image that is spatially aligned with the other GPR image using a correlation process or other technique. A GPR difference image is generated from the GPR shifted image and the other GPR image. The GPR difference image includes data representative of changes to the underground region that occurred between the two measurement passes.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 15, 2015
    Inventors: Robert George Atkins, Justin John Brooke, Matthew Tyler Cornick, Beijia Zhang
  • Patent number: 8949024
    Abstract: Described are a method and a system for localization of a vehicle. The method includes the acquisition of SPR images of a subsurface region along a vehicle track. Acquired SPR images are compared to SPR images previously acquired for a subsurface region that at least partially overlaps the subsurface region along the vehicle track. In some embodiments, the comparison includes an image correlation procedure. Location data for the vehicle are determined based in part on location data for the SPR images previously acquired for the second subsurface region. Location data can be used to guide the vehicle along a desired path. The relatively static nature of features in the subsurface region provides the method with advantages over other sensor-based navigation systems that may be adversely affected by weather conditions, dynamic features and time-varying illumination. The method can be used in a variety of applications, including self-driving automobiles and autonomous platforms.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick, Charles Michael Coldwell, Jeffrey Charles Koechling, Beijia Zhang
  • Patent number: 8786485
    Abstract: Described are a method and system for detecting and locating changes in an underground region. Changes are detected using a mobile coherent change detection ground penetrating radar (GPR). The GPR system is located on a mobile platform that makes two more measurement passes over the same route to acquire GPR images of an underground region at different times. A lateral offset between the GPR images for the two different times is determined and applied to one of the GPR images to generate a GPR shifted image that is spatially aligned with the other GPR image using a correlation process or other technique. A GPR difference image is generated from the GPR shifted image and the other GPR image. The GPR difference image includes data representative of changes to the underground region that occurred between the two measurement passes.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 22, 2014
    Assignee: Masachusetts Institute of Technology
    Inventors: Robert George Atkins, Justin John Brooke, Matthew Tyler Cornick, Beijia Zhang
  • Publication number: 20140121964
    Abstract: Described are a method and a system for localization of a vehicle. The method includes the acquisition of SPR images of a subsurface region along a vehicle track. Acquired SPR images are compared to SPR images previously acquired for a subsurface region that at least partially overlaps the subsurface region along the vehicle track. In some embodiments, the comparison includes an image correlation procedure. Location data for the vehicle are determined based in part on location data for the SPR images previously acquired for the second subsurface region. Location data can be used to guide the vehicle along a desired path. The relatively static nature of features in the subsurface region provides the method with advantages over other sensor-based navigation systems that may be adversely affected by weather conditions, dynamic features and time-varying illumination. The method can be used in a variety of applications, including self-driving automobiles and autonomous platforms.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 1, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Byron McCall Stanley, Matthew Tyler Cornick, Charles Michael Coldwell, Jeffrey Charles Koechling, Beijia Zhang
  • Publication number: 20130050008
    Abstract: Described are a method and system for detecting and locating changes in an underground region. Changes are detected using a mobile coherent change detection ground penetrating radar (GPR). The GPR system is located on a mobile platform that makes two more measurement passes over the same route to acquire GPR images of an underground region at different times. A lateral offset between the GPR images for the two different times is determined and applied to one of the GPR images to generate a GPR shifted image that is spatially aligned with the other GPR image using a correlation process or other technique. A GPR difference image is generated from the GPR shifted image and the other GPR image. The GPR difference image includes data representative of changes to the underground region that occurred between the two measurement passes.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Robert George Atkins, Justin J. Brooke, Matthew Tyler Cornick, Beijia Zhang