Patents by Inventor Matthew W. Collier

Matthew W. Collier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6331497
    Abstract: The polycrystalline cubic baron nitride cutting tool has a particle size in the range of from 10-17 microns. In addition to CBN, the tool has from 2%-15% by weight of a refractory compound selected from the group consisting of titanium carbonitride, titanium aluminum carbonitride, titanium carbide, titanium nitride, titanium diboride and aluminum diboride. When using one of the carbonitrides, the carbon to nitrogen proportion is preferably in the range of from 30 atomic percent carbon and 70 atomic percent carbon to 70 atomic percent carbon and 30 atomic percent nitrogen, and preferably is about 50/50. In addition, there is an infiltrate containing aluminum and/or silicon. A quantity of diamond crystals more than stoichiometric with the amount of silicon infiltrated is included in the composition for forming silicon carbide. The cutting tool is not formed on a cemented tungsten carbide substrate so is substantially free of cobalt.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: December 18, 2001
    Assignee: Smith International, Inc.
    Inventors: Matthew W. Collier, Xian Yao, Brian G. Bowers
  • Patent number: 6140262
    Abstract: The polycrystalline cubic boron nitride cutting tool has a particle size in the range of from 10-17 microns. In addition to CBN, the tool has from 2%-15% by weight of a refractory compound selected from the group consisting of titanium carbonitride, titanium aluminum carbonitride, titanium carbide, titanium nitride, titanium diboride and aluminum diboride. When using one of the carbonitrides, the carbon to nitrogen proportion is preferably in the range of from 30 atomic percent carbon and 70 atomic percent nitrogen to 70 atomic percent carbon and 30 atomic percent nitrogen, and preferably is about 50 atomic percent carbon and 50 atomic percent nitrogen. In addition, there is an infiltrant containing aluminum and/or silicon. The cutting tool is not formed on a cemented tungsten carbide substrate so is substantially free of cobalt.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: October 31, 2000
    Assignee: Smith International, Inc.
    Inventors: Matthew W. Collier, Xian Yao, Brian G. Bowers
  • Patent number: 5830813
    Abstract: A polycrystalline cubic boron nitride cutting tool is from 50 to 85% by weight cubic boron nitride crystals bonded together as a polycrystalline mass. A supporting phase commingled with the polycrystalline cubic boron nitride is made from 15 to 40% by weight of a refractory material which is preferably titanium carbonitride or titanium aluminum carbonitride. The starting composition also comprises from 4 to 10% by weight of Co.sub.2 Al.sub.9. Mixed powders of these ingredients are treated in ammonia at a temperature in the range of from 1000.degree. to 1250.degree. C., which significantly increases the nitrogen content and reduces carbon content of titanium carbonitride. Instead of mixed powders of the starting materials, coated particles may be used such as cubic boron nitride coated with titanium carbonitride, or titanium carbonitride coated with cobalt, aluminum or cobalt aluminide. Hexagonal boron nitride may be substituted as a starting material for a portion of the cubic boron nitride.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: November 3, 1998
    Assignee: Smith International, Inc.
    Inventors: Xian Yao, Matthew W. Collier, Madapusi K. Keshavan, Ghanshyam Rai
  • Patent number: 5639285
    Abstract: A polycrystalline cubic boron nitride cutting tool is from 50 to 85% by weight cubic boron nitride crystals bonded together as a polycrystalline mass. A supporting phase commingled with the polycrystalline cubic boron nitride is made from 15 to 40% by weight of a refractory material which is preferably titanium carbonitride or titanium aluminum carbonitride. The starting composition also comprises from 4 to 10% by weight of Co.sub.2 Al.sub.9. Mixed powders of these ingredients are treated in ammonia at a temperature in the range of from 1000.degree. to 1250.degree. C., which significantly increases the nitrogen content and reduces carbon content of titanium carbonitride. Instead of mixed powders of the starting materials, coated particles may be used such as cubic boron nitride coated with titanium carbonitride, or titanium carbonitride coated with cobalt, aluminum or cobalt aluminide. Hexagonal boron nitride may be substituted as a starting material for a portion of the cubic boron nitride.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: June 17, 1997
    Assignee: Smith International, Inc.
    Inventors: Xian Yao, Matthew W. Collier, Madapusi K. Keshavan, Ghanshyam Rai