Patents by Inventor Matthew W. Jacobson

Matthew W. Jacobson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11478214
    Abstract: The present invention is directed to an alternative geometric calibration method based on a calibration phantom with multiple line-shaped markers. The markers can in some embodiments take the form of radio-opaque wires. Line fiducials overcome the occlusion hazards of spherical fiducials, because their projections overlap very mildly as long as the wires are mutually non-coplanar in 3D. This makes the phantom amenable to a wider range of orbits and less sensitive to phantom positioning. Equations relating the pose of 3D line-shaped objects to their 2D radiographic projections are then used as the basis for view-by-view geometry estimation. The technique can flexibly accommodate a wide range of different CT scan trajectories, including strongly noncircular trajectories known to provide better image quality than standard circular scans.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 25, 2022
    Assignee: The Johns Hopkins University
    Inventors: Jeffrey H. Siewerdsen, Matthew W. Jacobson, Michael Ketcha
  • Publication number: 20200085404
    Abstract: The present invention is directed to an alternative geometric calibration method based on a calibration phantom with multiple line-shaped markers. The markers can in some embodiments take the form of radio-opaque wires. Line fiducials overcome the occlusion hazards of spherical fiducials, because their projections overlap very mildly as long as the wires are mutually non-coplanar in 3D. This makes the phantom amenable to a wider range of orbits and less sensitive to phantom positioning. Equations relating the pose of 3D line-shaped objects to their 2D radiographic projections are then used as the basis for view-by-view geometry estimation. The technique can flexibly accommodate a wide range of different CT scan trajectories, including strongly noncircular trajectories known to provide better image quality than standard circular scans.
    Type: Application
    Filed: March 16, 2018
    Publication date: March 19, 2020
    Inventors: Jeffrey H. Siewerdsen, Matthew W. Jacobson, Michael Ketcha