Patents by Inventor Matthew Wade Puckett

Matthew Wade Puckett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12032009
    Abstract: A sensor system comprises a laser source that emits a pump beam at a first wavelength and a probe beam at a second wavelength, and an optical means for receiving the pump and probe beams. The optical means is operative to generate a plurality of light beams, each having a different frequency, from the pump and probe beams. One or more cells receive the light beams from the optical means and allow passage of the light beams therethrough, with the cells containing alkali atoms. A dichroic filter is configured to receive the light beams from the cells. The dichroic filter separates pump beam light and probe beam light from the light beams. A detector array receives the probe beam light from the dichroic filter. The detector array includes a two-dimensional array of photosensors that map out transmission of respective light beams corresponding to the probe beam light through the cells.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: July 9, 2024
    Assignee: Honeywell International Inc.
    Inventors: Robert Compton, Karl D. Nelson, Neal Eldrich Solmeyer, Matthew Wade Puckett
  • Publication number: 20240192574
    Abstract: A nonlinear wave mixing system with grating assisted phase matching is provided. The system includes a pump laser and a nonlinear waveguide. The pump laser is used to generate pump light at a select wavelength. The nonlinear waveguide is configured to generate produced light from the pump light that is directed into the nonlinear waveguide. The nonlinear waveguide includes at least one backward grating that is configured to diffract the produced light in a backward direction relative to a direction the produced light travels in the nonlinear waveguide to reach the backward grating. The backward grating having a grating momentum that generates counter-propagating phase matching in the produced light.
    Type: Application
    Filed: February 22, 2024
    Publication date: June 13, 2024
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins, Jad Salman
  • Publication number: 20240184053
    Abstract: Techniques are provided for implementing and using a travelling wave resonator, comprising planar optical waveguide including at least two stacked cores, to diminish Kerr effect in the travelling wave resonator. The travelling wave resonator may be used in a resonator optical gyroscope.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 6, 2024
    Applicant: Honeywell International Inc.
    Inventors: Jianfeng Wu, Matthew Wade Puckett, Steven Tin, Tiequn Qiu
  • Patent number: 11988774
    Abstract: Embodiments relating to an integrated photonics air data system are disclosed. A light beam from a laser source is routed to a plurality of tunable optical filters operative to transmit the light beam to one of a plurality of emitting grating couplers at any given time. The tunable optical filters are configured such that the light beam is emitted into the region of interest at different times from each of the emitting grating couplers. A passive optical filter array is configured to receive scattered light from the emitted light beam. The passive optical filter array comprises a plurality of optical notch filters operative for frequency selection, and a plurality of optical detectors each respectively coupled to an output of one of the optical notch filters. The passive optical filter array is operative to perform frequency spectrum decomposition of the received scattered light into a plurality of signals.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 21, 2024
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Steven Tin, Chad Fertig
  • Patent number: 11940715
    Abstract: A nonlinear wave mixing system with grating assisted phase matching is provided. The system includes a pump laser and a nonlinear waveguide. The pump laser is used to generate pump light at a select wavelength. The nonlinear waveguide is configured to generate produced light from the pump light that is directed into the nonlinear waveguide. The nonlinear waveguide includes at least one backward grating that is configured to diffract the produced light in a backward direction relative to a direction the produced light travels in the nonlinear waveguide to reach the backward grating. The backward grating having a grating momentum that generates counter-propagating phase matching in the produced light.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: March 26, 2024
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins, Jad Salman
  • Patent number: 11940374
    Abstract: A continuously tunable radio frequency (RF) sensor system is provided. The system includes a pump laser system that includes first and second pump lasers, at least one frequency modulator to modulate frequencies of first and second laser light from the pump lasers to first and second select frequencies, a switch system to selectively pass one of the first and second laser light, an amplifier to amplify the passed laser light, a frequency doubler to double the frequency of the amplified laser light to generate pump light. A laser source lock system is in communication with the pump laser system to ensure a frequency of the pump light is referenced to atoms in a vapor cell and provide a probe light. The pump light and probe light are transmitted through the vapor cell. A detector measures the probe light that passed through the vapor cell.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: March 26, 2024
    Assignee: Honeywell International Inc.
    Inventors: Karl D. Nelson, Matthew Wade Puckett, Neal Eldrich Solmeyer, Robert Compton
  • Patent number: 11920933
    Abstract: Techniques for reducing the bias error present in optical gyroscopes is disclosed. Such techniques include at least one path length adjustment member placed in an optical gyroscope resonator, which are configured to modulate the optical path length of the resonator so that bias errors attributable to the optical path length are shifted outside of the bandwidth of the optical gyroscope. In some embodiments, the at least one path length adjustment member includes a plurality of microheaters coupled to the resonator, in which case optical path length modulation is achieved by heating the resonator via the microheaters. Alternatively, a plurality of piezo-electric regions can be placed in the resonator, which enables optical path length modulation through electric field gradients applied to the piezo-electric regions.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: March 5, 2024
    Assignee: Honeywell International Inc.
    Inventors: Jianfeng Wu, Matthew Wade Puckett, Karl D. Nelson
  • Publication number: 20240069407
    Abstract: A nonlinear wave mixing system with grating assisted phase matching is provided. The system includes a pump laser and a nonlinear waveguide. The pump laser is used to generate pump light at a select wavelength. The nonlinear waveguide is configured to generate produced light from the pump light that is directed into the nonlinear waveguide. The nonlinear waveguide includes at least one backward grating that is configured to diffract the produced light in a backward direction relative to a direction the produced light travels in the nonlinear waveguide to reach the backward grating. The backward grating having a grating momentum that generates counter-propagating phase matching in the produced light.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 29, 2024
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins, Jad Salman
  • Patent number: 11880067
    Abstract: In an example, an integrated optical circuit (IOC) includes a first substrate formed of a first material and a first waveguide formed of a second material and positioned on the first substrate. The first waveguide includes a plurality of branches and is configured to polarize light beams that propagate through the first waveguide. The IOC further includes a second substrate formed of a third material, the second substrate coupled to or positioned on the first substrate. The IOC further includes a plurality of straight waveguides formed in the second substrate, each of the plurality of straight waveguides optically coupled to a respective branch of the plurality of branches of the first waveguide. The IOC further includes a plurality of electrodes positioned proximate to the plurality of straight waveguides, the plurality of electrodes configured to modulate the phase of light beams that propagate through the plurality of straight waveguides.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: January 23, 2024
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey Earl Lewis, Matthew Wade Puckett, Neil A. Krueger, Chellappan Narayanan
  • Publication number: 20230408765
    Abstract: Techniques are provided for implementing a low insertion loss optical coupler utilizing a low confinement planar optical waveguide and two high confinement planar optical waveguides. The optical coupler efficiently couples an optical signal with a cross section greater than either high confinement planar optical waveguide.
    Type: Application
    Filed: June 17, 2022
    Publication date: December 21, 2023
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Hoyt, Karl D. Nelson, Jianfeng Wu
  • Patent number: 11828981
    Abstract: An optical device comprises a waveguide core layer that includes a planar lens structure having a first end and a second end, with the planar lens structure including a plurality of lens tapers extending from at least one of the first or seconds ends in a convex-shaped array. The waveguide core layer also includes a waveguide slab that adjoins with the planar lens structure, such that the waveguide slab is in optical communication with the plurality of lens tapers. The plurality of lens tapers are configured to adiabatically transition an index of refraction from a first index value, external to the planar lens structure, to a second index value, internal to the planar lens structure.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: November 28, 2023
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Hoyt, Chad Fertig, Matthew Robbins
  • Patent number: 11815718
    Abstract: Techniques relating to an improved optical waveguide are described. The optical waveguide includes an upper and lower waveguide that each comprise a first and second layer, in which photons are transferred from the lower waveguide to the upper waveguide. A structured subwavelength coupling region is included, for example, in the first upper waveguide layer. The fill factor of the subwavelength grating coupling region is increased in the direction of light propagation to increase the index of refraction of the structured subwavelength coupling region and therefore improve photon transfer from the lower waveguide. Additionally, the width of the optical waveguide (at least along the structured subwavelength coupling region) remains constant as the fill factor increases.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: November 14, 2023
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Steven Tin
  • Patent number: 11811456
    Abstract: Systems and embodiments for a multi-pixel waveguide optical receiver are described herein. In certain embodiments, a system includes an emitter that emits laser light towards a surface. The system also includes a receiver that passively receives reflected laser light that is a portion of the laser light reflected from the surface, wherein the receiver has multiple pixels having a size that is smaller than an expected optical speckle size, wherein the expected optical speckle size corresponds to a region on the receiver where the reflected laser light has a substantially uniform spatial phase. Additionally, the system includes a combiner configured to combine optical fields from each pixel in the multiple pixels into an output that supports a number of modes that is equal to a number of pixels in the multiple pixels. Moreover, the system includes a photodetector configured to receive light from the output.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 7, 2023
    Assignee: Honeywell International Inc.
    Inventors: Chad Fertig, Matthew Wade Puckett
  • Publication number: 20230341485
    Abstract: Systems and method for the delivery of a pump laser using optical diffraction are described herein. In certain embodiments, a system includes a substrate and a waveguide layer formed on the substrate. The waveguide layer includes a first waveguide of a first material configured to receive a probe laser for propagating within the first waveguide. The waveguide layer additionally includes a second waveguide configured to receive a pump laser for propagating within the second waveguide. Further, the waveguide layer includes one or more diffractors configured to direct a portion of the pump laser out of the second waveguide and through the first waveguide.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 26, 2023
    Applicant: Honeywell International Inc.
    Inventors: Neal Eldrich Solmeyer, Matthew Wade Puckett, Matthew Robbins, Eugene Freeman, Mary Salit
  • Publication number: 20230296832
    Abstract: An optical device comprises a waveguide core layer that includes a planar lens structure having a first end and a second end, with the planar lens structure including a plurality of lens tapers extending from at least one of the first or seconds ends in a convex-shaped array. The waveguide core layer also includes a waveguide slab that adjoins with the planar lens structure, such that the waveguide slab is in optical communication with the plurality of lens tapers. The plurality of lens tapers are configured to adiabatically transition an index of refraction from a first index value, external to the planar lens structure, to a second index value, internal to the planar lens structure.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Hoyt, Chad Fertig, Matthew Robbins
  • Publication number: 20230258871
    Abstract: A method for fiber-to-chip coupling is disclosed. The method comprises providing a photonic integrated circuit (PIC) that includes a substrate, a cladding layer on the substrate, and at least one waveguide embedded in the cladding layer, wherein the at least one waveguide has a waveguide interface. An optical fiber is positioned adjacent to the PIC, wherein the optical fiber has a fiber interface, and the fiber interface is aligned with the waveguide interface. A flowable inorganic oxide in liquid form is added to an area between the fiber interface and the waveguide interface. Thereafter, heat is applied to the area between the fiber interface and the waveguide interface for a period of time to cure the inorganic oxide, such that the optical fiber is coupled to the PIC. The cured inorganic oxide has a refractive index that substantially matches the refractive indices of the cladding layer and the optical fiber.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 17, 2023
    Applicant: Honeywell International Inc.
    Inventors: Matthew Robbins, Matthew Wade Puckett, Chad Hoyt
  • Publication number: 20230238773
    Abstract: Systems and methods for a tunable RF synthesizer based on offset optical frequency combs is provided herein. An exemplary system includes two lasers, a first laser generating a first laser output and a second laser generating a second laser output; and a coupler that receives the first and second laser outputs. Further, the system includes a resonator having first and second sections coupled to one another, the coupler coupling the first and second laser outputs into the resonator; a splitter that couples the first section to the second section, the splitter splitting a first proportion of the first laser output and a second proportion of the second laser output onto different paths within the resonator; and a controller that controls the splitter to change a size of the first proportion in relation to the first laser and the second proportion in relation to the second laser.
    Type: Application
    Filed: January 21, 2022
    Publication date: July 27, 2023
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Jianfeng Wu, Karl D. Nelson, Chad Hoyt
  • Patent number: 11705687
    Abstract: An optical phase modulator comprises a cascaded array of optical resonators, wherein each of the optical resonators has an input port and an output port. A plurality of waveguides are coupled between the optical resonators and are configured to provide cascaded optical communication between the optical resonators. Each of the waveguides is respectively coupled between the output port of one optical resonator and the input port of an adjacent optical resonator. A transmission electrode is positioned adjacent to the optical resonators, with the transmission electrode configured to apply a drive voltage across the optical resonators. The optical phase modulator is operative to co-propagate an input optical wave with the drive voltage, such that a resonator-to-resonator optical delay is matched with a resonator-to-resonator electrical delay.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: July 18, 2023
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Neil A. Krueger, Steven Tin, Jeffrey James Kriz
  • Publication number: 20230216267
    Abstract: Among other embodiments, a method for generated entangled photons is disclosed. The method comprises generating photons in a fundamental mode and converting the photons from the fundamental mode to a higher-order mode. The method further comprises generating, by a Bragg resonator configured to receive the photons, entangled photons in the fundamental mode from the converted photons in the higher-order mode. The method further comprises outputting the generated entangled photons from the Bragg resonator.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins
  • Patent number: 11586094
    Abstract: Improved architectures and related methods for enhancing entangled photon generation in optical systems are described. Photons from a light source are coupled from the fundamental mode into an optical resonator in a higher-order mode. The optical resonator comprises a photon generation portion configured to generate entangled photons from the coupled photons. The entangled photons are selectively extracted from the optical resonator in the fundamental mode while the remaining photons propagate through the optical resonator mode and combine with the source photons entering the optical resonator. While the source photons propagating or entering the optical resonator resonate within the optical resonator, the entangled photons are not resonant with the optical resonator, and are selectively extracted before traversing a complete cycle in the optical resonator. Extracted entangled photons can then be output for use in, for example, a communication system.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: February 21, 2023
    Assignee: Honeywell International Inc.
    Inventors: Chad Fertig, Matthew Wade Puckett, Matthew Robbins, Neil A. Krueger