Patents by Inventor Matthew Wasilik
Matthew Wasilik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240353376Abstract: Embodiments described herein involve a sensor test structure, comprising a substrate. A moat structure is configured to at least partially surround a resonating structure comprising at least one piezoelectric layer. An electrode comprises an electrode path. The electrode path crosses the moat region at least one time. Each moat crossing is configured to cause a change in resistance based on passivation failure of the moat structure.Type: ApplicationFiled: June 29, 2021Publication date: October 24, 2024Inventors: Cody ROMBACH, Matthew WASILIK, Buu Quoc DIEP
-
Publication number: 20240226889Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side.Type: ApplicationFiled: March 21, 2024Publication date: July 11, 2024Inventors: Rio Rivas, Kevin McCarron, Matthew Wasilik, David Doerr
-
Patent number: 12031949Abstract: A fluidic device and a method of preventing isolation material from bleed-out therein is described herein. The fluidic device includes a bulk acoustic wave resonator structure defining at least one surface area region on which a functionalization material is disposed and the resonator structure includes a repelling area. The fluidic device also includes isolation material disposed on the resonator structure and away from the at least one surface area region. The repelling area is configured to prevent the isolation material from extending into the at least one surface area region. Further, an electronic board may be operably attached to the resonator structure and the isolation material may be disposed in a gap therebetween to electrically isolate electrical contacts and form a fluidic channel.Type: GrantFiled: June 29, 2020Date of Patent: July 9, 2024Assignee: Qorvo US, Inc.Inventors: Buu Quoc Diep, John Belsick, Matthew Wasilik, Rio Rivas, Bang Nguyen, Derya Deniz
-
Patent number: 11992839Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side.Type: GrantFiled: May 19, 2022Date of Patent: May 28, 2024Assignee: Qorvo US, Inc.Inventors: Rio Rivas, Kevin McCarron, Matthew Wasilik, David Doerr
-
Patent number: 11964276Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side.Type: GrantFiled: May 19, 2022Date of Patent: April 23, 2024Assignee: Qorvo US, Inc.Inventors: Rio Rivas, Kevin McCarron, Matthew Wasilik, David Doerr
-
Publication number: 20240124968Abstract: A structure includes a substrate including a wafer or a portion thereof; and a piezoelectric bulk material layer comprising a first portion deposited onto the substrate and a second portion deposited onto the first portion, the second portion comprising an outer surface having a surface roughness (Ra) of 4.5 nm or less. Methods for depositing a piezoelectric bulk material layer include depositing a first portion of bulk layer material at a first incidence angle to achieve a predetermined c-axis tilt, and depositing a second portion of the bulk material layer onto the first portion at a second incidence angle that is smaller than the first incidence angle. The second portion has a second c-axis tilt that substantially aligns with the first c-axis tilt.Type: ApplicationFiled: December 20, 2023Publication date: April 18, 2024Inventors: Derya Deniz, Matthew Wasilik, Robert Kraft, John Belsick
-
Patent number: 11885007Abstract: A structure includes a substrate including a wafer or a portion thereof; and a piezoelectric bulk material layer comprising a first portion deposited onto the substrate and a second portion deposited onto the first portion, the second portion comprising an outer surface having a surface roughness (Ra) of 4.5 nm or less. Methods for depositing a piezoelectric bulk material layer include depositing a first portion of bulk layer material at a first incidence angle to achieve a predetermined c-axis tilt, and depositing a second portion of the bulk material layer onto the first portion at a second incidence angle that is smaller than the first incidence angle. The second portion has a second c-axis tilt that substantially aligns with the first c-axis tilt.Type: GrantFiled: June 14, 2022Date of Patent: January 30, 2024Assignee: Qorvo US, Inc.Inventors: Derya Deniz, Matthew Wasilik, Robert Kraft, John Belsick
-
Publication number: 20230389430Abstract: Methods of depositing material onto substrate comprising: depositing a first seed material onto a wafer substrate, the wafer substrate having a face that defines a normal to the substrate, wherein the first seed material is deposited at a pressure of 10 to 20 mTorr to form a pre-seed layer on the wafer substrate, wherein the pre-seed layer has a surface roughness from 1 to 10 nm; depositing a second seed material onto at least a portion of the pre-seed layer at an off-normal incidence angle to form a seed layer on at least a portion of the pre-seed layer; and depositing a bulk piezoelectric material onto at least a portion of the seed layer to form a bulk piezoelectric layer having a c-axis tilt of 35 degrees or greater and a surface roughness of 4.5 nm or less. Structures and bulk acoustic wave resonators containing same are also included.Type: ApplicationFiled: October 18, 2021Publication date: November 30, 2023Inventors: Derya Deniz, John Belsick, Matthew Wasilik, Buu Quoc Diep
-
Publication number: 20220404318Abstract: A fluidic device and a method of preventing isolation material from bleed-out therein is described herein. The fluidic device includes a bulk acoustic wave resonator structure defining at least one surface area region on which a functionalization material is disposed and the resonator structure includes a repelling area. The fluidic device also includes isolation material disposed on the resonator structure and away from the at least one surface area region. The repelling area is configured to prevent the isolation material from extending into the at least one surface area region. Further, an electronic board may be operably attached to the resonator structure and the isolation material may be disposed in a gap therebetween to electrically isolate electrical contacts and form a fluidic channel.Type: ApplicationFiled: June 29, 2020Publication date: December 22, 2022Inventors: Buu Quoc Diep, John Belsick, Matthew Wasilik, Rio Rivas, Bang Nguyen, Derya Deniz
-
Publication number: 20220325403Abstract: A structure includes a substrate including a wafer or a portion thereof; and a piezoelectric bulk material layer comprising a first portion deposited onto the substrate and a second portion deposited onto the first portion, the second portion comprising an outer surface having a surface roughness (Ra) of 4.5 nm or less. Methods for depositing a piezoelectric bulk material layer include depositing a first portion of bulk layer material at a first incidence angle to achieve a predetermined c-axis tilt, and depositing a second portion of the bulk material layer onto the first portion at a second incidence angle that is smaller than the first incidence angle. The second portion has a second c-axis tilt that substantially aligns with the first c-axis tilt.Type: ApplicationFiled: June 14, 2022Publication date: October 13, 2022Inventors: Derya Deniz, Matthew Wasilik, Robert Kraft, John Belsick
-
Publication number: 20220274104Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side.Type: ApplicationFiled: May 19, 2022Publication date: September 1, 2022Inventors: Rio Rivas, Kevin McCarron, Matthew Wasilik, David Doerr
-
Patent number: 11401601Abstract: A structure includes a substrate including a wafer or a portion thereof; and a piezoelectric bulk material layer comprising a first portion deposited onto the substrate and a second portion deposited onto the first portion, the second portion comprising an outer surface having a surface roughness (Ra) of 4.5 nm or less. Methods for depositing a piezoelectric bulk material layer include depositing a first portion of bulk layer material at a first incidence angle to achieve a predetermined c-axis tilt, and depositing a second portion of the bulk material layer onto the first portion at a second incidence angle that is smaller than the first incidence angle. The second portion has a second c-axis tilt that substantially aligns with the first c-axis tilt.Type: GrantFiled: September 13, 2019Date of Patent: August 2, 2022Assignee: Qorvo US, Inc.Inventors: Derya Deniz, Matthew Wasilik, Robert Kraft, John Belsick
-
Patent number: 11369960Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side.Type: GrantFiled: May 6, 2020Date of Patent: June 28, 2022Assignee: Qorvo Biotechnologies, LLCInventors: Rio Rivas, Kevin McCarron, Matthew Wasilik, David Doerr
-
Publication number: 20210079515Abstract: A structure includes a substrate including a wafer or a portion thereof; and a piezoelectric bulk material layer comprising a first portion deposited onto the substrate and a second portion deposited onto the first portion, the second portion comprising an outer surface having a surface roughness (Ra) of 4.5 nm or less. Methods for depositing a piezoelectric bulk material layer include depositing a first portion of bulk layer material at a first incidence angle to achieve a predetermined c-axis tilt, and depositing a second portion of the bulk material layer onto the first portion at a second incidence angle that is smaller than the first incidence angle. The second portion has a second c-axis tilt that substantially aligns with the first c-axis tilt.Type: ApplicationFiled: September 13, 2019Publication date: March 18, 2021Inventors: Derya Deniz, Matthew Wasilik, Robert Kraft, John Belsick
-
Publication number: 20200353463Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side.Type: ApplicationFiled: May 6, 2020Publication date: November 12, 2020Inventors: Rio Rivas, Kevin McCarron, Matthew Wasilik, David Doerr
-
Patent number: 8026485Abstract: An infrared sensor with at least one cantilever beam functionalized with chitin, chitosan or their derivatives that can be tailored to be sensitive to certain IR bands for detection and does not require cooling is described. The functional layers expand differently than the structural layer of the cantilever beam causing the beam to bend in response to exposure to infrared radiation. The sensor can be adapted to optical, piezoresistive, capacitive and piezoelectric methods of detect beam deflection. Sensitivity can be increased with a reflective layer to increase the absorption of infrared radiation by the functional layer.Type: GrantFiled: March 16, 2010Date of Patent: September 27, 2011Assignee: The Regents of the University of CaliforniaInventors: Michael T. Mueller, Albert P. Pisano, Robert Azevedo, David C. Walther, David R. Myers, Matthew Wasilik
-
Publication number: 20100243904Abstract: An infrared sensor with at least one cantilever beam functionalized with chitin, chitosan or their derivatives that can be tailored to be sensitive to certain IR bands for detection and does not require cooling is described. The functional layers expand differently than the structural layer of the cantilever beam causing the beam to bend in response to exposure to infrared radiation. The sensor can be adapted to optical, piezoresistive, capacitive and piezoelectric methods of detect beam deflection. Sensitivity can be increased with a reflective layer to increase the absorption of infrared radiation by the functional layer.Type: ApplicationFiled: March 16, 2010Publication date: September 30, 2010Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Michael T. Mueller, Albert P. Pisano, Robert Azevedo, David C. Walther, David R. Myers, Matthew Wasilik