Patents by Inventor Matthew Yard

Matthew Yard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964567
    Abstract: A propulsion control system has an electric motor configured to generate an axle torque in response to a final torque command, and has a motor constraint that specifies a maximum torque. A motor controller is configured to generate the final torque command in response to an intermediate torque command and a distributed power limit command. An open-loop function in supervisory controller is configured to calculate an initial torque command vector in response to a driver torque command, calculate an intended operating vector by mapping the initial torque command vector into a multidimensional power space, generate the intermediate torque command by clipping the intended operating vector in response to the motor constraint, generate a constrained command vector by clipping the intended operating vector in response to the motor constraint and a plurality of energy storage constraints, and generate the distributed power limit command in response to the constrained command vector.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: April 23, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: Rashad K. Maady, Krunal P. Patel, Matthew Yard, Kristopher D. Lang
  • Patent number: 11752881
    Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: September 12, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
  • Patent number: 11708060
    Abstract: A method for distributing electrical power to electric motors in an electric powertrain, in which the electric motors are electrically connected to a shared power supply, includes receiving input signals via a supervisory controller. The input signals include a total torque request of the electric powertrain and electrical limits of the power supply. The method includes determining an open-loop torque command for each respective motor in response to the input signals. In response to the total torque request and the power supply limits, the controller also determines maximum and minimum power limits of motor, with the maximum and minimum power limits including a calibrated power reserve for executing a predetermined torque operation. The method includes transmitting the open-loop torque command and the power limits to a respective motor control processor of each motor to thereby control the torque operation.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: July 25, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew Yard, Krunal P. Patel, Karthikeyan Palanichamy, Luke D. Shepley
  • Publication number: 20220242387
    Abstract: A method for distributing electrical power to electric motors in an electric powertrain, in which the electric motors are electrically connected to a shared power supply, includes receiving input signals via a supervisory controller. The input signals include a total torque request of the electric powertrain and electrical limits of the power supply. The method includes determining an open-loop torque command for each respective motor in response to the input signals. In response to the total torque request and the power supply limits, the controller also determines maximum and minimum power limits of motor, with the maximum and minimum power limits including a calibrated power reserve for executing a predetermined torque operation. The method includes transmitting the open-loop torque command and the power limits to a respective motor control processor of each motor to thereby control the torque operation.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 4, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Matthew Yard, Krunal P. Patel, Karthikeyan Palanichamy, Luke D. Shepley
  • Publication number: 20220227239
    Abstract: A propulsion control system has an electric motor configured to generate an axle torque in response to a final torque command, and has a motor constraint that specifies a maximum torque. A motor controller is configured to generate the final torque command in response to an intermediate torque command and a distributed power limit command. An open-loop function in supervisory controller is configured to calculate an initial torque command vector in response to a driver torque command, calculate an intended operating vector by mapping the initial torque command vector into a multidimensional power space, generate the intermediate torque command by clipping the intended operating vector in response to the motor constraint, generate a constrained command vector by clipping the intended operating vector in response to the motor constraint and a plurality of energy storage constraints, and generate the distributed power limit command in response to the constrained command vector.
    Type: Application
    Filed: January 19, 2021
    Publication date: July 21, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rashad K. Maady, Krunal P. Patel, Matthew Yard, Kristopher D. Lang
  • Publication number: 20220227237
    Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
  • Patent number: 11241967
    Abstract: Presented are vehicle powertrains and control logic for provisioning intelligent fast-torque output, methods for making/using such systems, and electric-drive vehicles with dynamically allocated fast-torque production. A method of controlling torque output of a vehicle powertrain includes a vehicle controller receiving sensor data and determining therefrom maximum and minimum motor torque capacities of a traction motor. The controller calculates the traction motor's maximum and minimum effective motor capacities based on a previous motor torque command and the maximum and minimum torque capacities, respectively. The controller then determines if a negative of the crankshaft torque reserve is: (1) greater than the minimum effective motor capacity; and (2) less than the maximum effective motor capacity. If (1) or (2) is true, an engine spark torque command is set equal to an air torque spark value, and the controller commands an engine assembly to modulate its torque output based on the spark torque command.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: February 8, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew Yard, Luke D. Shepley, Jacob B. Wilson
  • Publication number: 20200369162
    Abstract: Presented are vehicle powertrains and control logic for provisioning intelligent fast-torque output, methods for making/using such systems, and electric-drive vehicles with dynamically allocated fast-torque production. A method of controlling torque output of a vehicle powertrain includes a vehicle controller receiving sensor data and determining therefrom maximum and minimum motor torque capacities of a traction motor. The controller calculates the traction motor's maximum and minimum effective motor capacities based on a previous motor torque command and the maximum and minimum torque capacities, respectively. The controller then determines if a negative of the crankshaft torque reserve is: (1) greater than the minimum effective motor capacity; and (2) less than the maximum effective motor capacity. If (1) or (2) is true, an engine spark torque command is set equal to an air torque spark value, and the controller commands an engine assembly to modulate its torque output based on the spark torque command.
    Type: Application
    Filed: May 23, 2019
    Publication date: November 26, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Matthew Yard, Luke D. Shepley, Jacob B. Wilson