Patents by Inventor Matthew Yard
Matthew Yard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11964567Abstract: A propulsion control system has an electric motor configured to generate an axle torque in response to a final torque command, and has a motor constraint that specifies a maximum torque. A motor controller is configured to generate the final torque command in response to an intermediate torque command and a distributed power limit command. An open-loop function in supervisory controller is configured to calculate an initial torque command vector in response to a driver torque command, calculate an intended operating vector by mapping the initial torque command vector into a multidimensional power space, generate the intermediate torque command by clipping the intended operating vector in response to the motor constraint, generate a constrained command vector by clipping the intended operating vector in response to the motor constraint and a plurality of energy storage constraints, and generate the distributed power limit command in response to the constrained command vector.Type: GrantFiled: January 19, 2021Date of Patent: April 23, 2024Assignee: GM Global Technology Operations LLCInventors: Rashad K. Maady, Krunal P. Patel, Matthew Yard, Kristopher D. Lang
-
Patent number: 11752881Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.Type: GrantFiled: January 20, 2021Date of Patent: September 12, 2023Assignee: GM Global Technology Operations LLCInventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
-
Patent number: 11708060Abstract: A method for distributing electrical power to electric motors in an electric powertrain, in which the electric motors are electrically connected to a shared power supply, includes receiving input signals via a supervisory controller. The input signals include a total torque request of the electric powertrain and electrical limits of the power supply. The method includes determining an open-loop torque command for each respective motor in response to the input signals. In response to the total torque request and the power supply limits, the controller also determines maximum and minimum power limits of motor, with the maximum and minimum power limits including a calibrated power reserve for executing a predetermined torque operation. The method includes transmitting the open-loop torque command and the power limits to a respective motor control processor of each motor to thereby control the torque operation.Type: GrantFiled: February 2, 2021Date of Patent: July 25, 2023Assignee: GM Global Technology Operations LLCInventors: Matthew Yard, Krunal P. Patel, Karthikeyan Palanichamy, Luke D. Shepley
-
Publication number: 20220242387Abstract: A method for distributing electrical power to electric motors in an electric powertrain, in which the electric motors are electrically connected to a shared power supply, includes receiving input signals via a supervisory controller. The input signals include a total torque request of the electric powertrain and electrical limits of the power supply. The method includes determining an open-loop torque command for each respective motor in response to the input signals. In response to the total torque request and the power supply limits, the controller also determines maximum and minimum power limits of motor, with the maximum and minimum power limits including a calibrated power reserve for executing a predetermined torque operation. The method includes transmitting the open-loop torque command and the power limits to a respective motor control processor of each motor to thereby control the torque operation.Type: ApplicationFiled: February 2, 2021Publication date: August 4, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Matthew Yard, Krunal P. Patel, Karthikeyan Palanichamy, Luke D. Shepley
-
Publication number: 20220227239Abstract: A propulsion control system has an electric motor configured to generate an axle torque in response to a final torque command, and has a motor constraint that specifies a maximum torque. A motor controller is configured to generate the final torque command in response to an intermediate torque command and a distributed power limit command. An open-loop function in supervisory controller is configured to calculate an initial torque command vector in response to a driver torque command, calculate an intended operating vector by mapping the initial torque command vector into a multidimensional power space, generate the intermediate torque command by clipping the intended operating vector in response to the motor constraint, generate a constrained command vector by clipping the intended operating vector in response to the motor constraint and a plurality of energy storage constraints, and generate the distributed power limit command in response to the constrained command vector.Type: ApplicationFiled: January 19, 2021Publication date: July 21, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Rashad K. Maady, Krunal P. Patel, Matthew Yard, Kristopher D. Lang
-
Publication number: 20220227237Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.Type: ApplicationFiled: January 20, 2021Publication date: July 21, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
-
Patent number: 11241967Abstract: Presented are vehicle powertrains and control logic for provisioning intelligent fast-torque output, methods for making/using such systems, and electric-drive vehicles with dynamically allocated fast-torque production. A method of controlling torque output of a vehicle powertrain includes a vehicle controller receiving sensor data and determining therefrom maximum and minimum motor torque capacities of a traction motor. The controller calculates the traction motor's maximum and minimum effective motor capacities based on a previous motor torque command and the maximum and minimum torque capacities, respectively. The controller then determines if a negative of the crankshaft torque reserve is: (1) greater than the minimum effective motor capacity; and (2) less than the maximum effective motor capacity. If (1) or (2) is true, an engine spark torque command is set equal to an air torque spark value, and the controller commands an engine assembly to modulate its torque output based on the spark torque command.Type: GrantFiled: May 23, 2019Date of Patent: February 8, 2022Assignee: GM Global Technology Operations LLCInventors: Matthew Yard, Luke D. Shepley, Jacob B. Wilson
-
Publication number: 20200369162Abstract: Presented are vehicle powertrains and control logic for provisioning intelligent fast-torque output, methods for making/using such systems, and electric-drive vehicles with dynamically allocated fast-torque production. A method of controlling torque output of a vehicle powertrain includes a vehicle controller receiving sensor data and determining therefrom maximum and minimum motor torque capacities of a traction motor. The controller calculates the traction motor's maximum and minimum effective motor capacities based on a previous motor torque command and the maximum and minimum torque capacities, respectively. The controller then determines if a negative of the crankshaft torque reserve is: (1) greater than the minimum effective motor capacity; and (2) less than the maximum effective motor capacity. If (1) or (2) is true, an engine spark torque command is set equal to an air torque spark value, and the controller commands an engine assembly to modulate its torque output based on the spark torque command.Type: ApplicationFiled: May 23, 2019Publication date: November 26, 2020Applicant: GM Global Technology Operations LLCInventors: Matthew Yard, Luke D. Shepley, Jacob B. Wilson