Patents by Inventor Matthias A. Blumrich

Matthias A. Blumrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7174434
    Abstract: A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk Hoenicke, Martin Ohmacht, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Publication number: 20050002387
    Abstract: A one-bounce data network comprises a plurality of nodes interconnected to each other via communication links, the network including a plurality of interconnected switch devices, said switch devices interconnected such that a message is communicated between any two switches passes over a single link from a source switch to a destination switch; and, the source switch concurrently sends a message to an arbitrary bounce switch which then sends the message to the destination switch.
    Type: Application
    Filed: September 30, 2003
    Publication date: January 6, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark Giampapa, Philip Heidelberger, Burkhard Steinmacher-Burow, Pavlos Vranas
  • Publication number: 20040103218
    Abstract: A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency.
    Type: Application
    Filed: August 22, 2003
    Publication date: May 27, 2004
    Inventors: Matthias A Blumrich, Dong Chen, George L Chiu, Thomas M Cipolla, Paul W Coteus, Alan G Gara, Mark E Giampapa, Philip Heidelberg, Gerard V Kopcsay, Lawrence S Mok, Todd E Takken
  • Publication number: 20040081155
    Abstract: Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 29, 2004
    Inventors: Gyan V Bhanot, Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Publication number: 20040078493
    Abstract: A system and method for enabling high-speed, low-latency global tree communications among processing nodes interconnected according to a tree network structure. The global tree network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations include one or more of: global broadcast operations downstream from a root node to leaf nodes of a virtual tree, global reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node in the virtual tree.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 22, 2004
    Inventors: Matthias A Blumrich, Dong Chen, Paul W Coteus, Alan G Gara, Mark E Giampapa, Philip Heidelberger, Dirk Hoenicke, Burkhard D Steinmacher-Burow, Todd E Takken, Pavlos M Vranas
  • Publication number: 20040078482
    Abstract: In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 22, 2004
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Publication number: 20040073758
    Abstract: A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 15, 2004
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk Hoenicke, Martin Ohmacht, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Publication number: 20040073590
    Abstract: Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 15, 2004
    Inventors: Gyan Bhanot, Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Publication number: 20040068599
    Abstract: A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 8, 2004
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Gerard V. Kopcsay, Burkhard D. Steinmacher-Burow, Todd E. Takken