Patents by Inventor Matthias Falk

Matthias Falk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11822717
    Abstract: A method for recognizing a state of an eye for a laser device. The method includes reading in an eye parameter using the laser device, which represents a movement of the eye. The eye parameter is compared with a first and/or with a second reference parameter in order to obtain a comparison result. A type of movement of the eye is determined using the comparison result, which represents a saccadic eye movement when the eye parameter has a greater value than the first reference parameter. The type of movement represents a smooth eye movement when the eye parameter has a value which corresponds to the second reference parameter and at most to the first reference parameter. A viewing direction is ascertained as a function of the determined type of movement.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: November 21, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Alexander Herrmann, Johannes Meyer, Matthias Falk
  • Publication number: 20230040956
    Abstract: A method for recognizing a state of an eye for a laser device. The method includes reading in an eye parameter using the laser device, which represents a movement of the eye. The eye parameter is compared with a first and/or with a second reference parameter in order to obtain a comparison result. A type of movement of the eye is determined using the comparison result, which represents a saccadic eye movement when the eye parameter has a greater value than the first reference parameter. The type of movement represents a smooth eye movement when the eye parameter has a value which corresponds to the second reference parameter and at most to the first reference parameter. A viewing direction is ascertained as a function of the determined type of movement.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 9, 2023
    Inventors: Alexander Herrmann, Johannes Meyer, Matthias Falk
  • Publication number: 20210116355
    Abstract: A method reduces false-positive particle counts detected by an interference particle sensor module, which has a laser and a light detector. The method including: emitting laser light; providing a high-frequency signal during the emission of the laser light, a modulation frequency of the high-frequency signal being between 10-500 MHz; detecting an optical response by the light detector in reaction to the emitted laser light while providing the high-frequency signal, which is arranged such that a detection signal caused by a macroscopic object positioned between a first and second distance is reduced in comparison to a detection signal caused by the macroscopic object at the same position without providing the high-frequency signal. The high-frequency signal is provided to a tuning structure of the particle sensor module which is arranged to modify a resonance frequency of an optical resonator comprised by the laser sensor module upon reception of the high-frequency signal.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 22, 2021
    Inventors: Hans Spruit, Alexander Van der Lee, Philipp Henning Gerlach, Robert Wolf, Robert Weiss, Matthias Falk
  • Patent number: 10907132
    Abstract: A method for growing polarized endometrial cells, said method comprising: (a) disposing endometrial cells on a scaffold, said scaffold comprising a silica-based glass composition, characterized by multi-modal porosity, said scaffold being to define a top side and a bottom side; (b) providing nutrients to said top and bottom sides of said scaffold and an environment to grow polarized endometrial cells on said scaffold.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: February 2, 2021
    Assignee: Lehigh University
    Inventors: Larry Barmat, Matthias Falk, Himanshu Jain, Stephen Somkuti
  • Patent number: 10782221
    Abstract: A system for determining a particle contamination and a method for determining a particle contamination in a measurement environment is provided in which individual particles in the measurement environment are detected (S1), wherein a) an estimate of the number of particles per volume in the measurement environment is ascertained (S2), b) an estimate of the number of particles per volume and characterization information describing the particle source in the measurement information are taken as a basis for ascertaining an output value for the particle contamination in the measurement environment (S3), and c) context-related data are made available and the characterization information is estimated on the basis of the available context-related data (S4).
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: September 22, 2020
    Assignees: ROBERT BOSCH GMBH, TRUMPF PHOTONIC COMPONENTS GMBH
    Inventors: Stefan Weiss, Alexander Herrmann, Robert Wolf, Alexander Van Der Lee, Wolfram Johannes Martin Lyda, Balazs Jatekos, Robert Weiss, Sören Sofke, Hans Spruit, Jens-Alrik Adrian, Matthias Falk, Dominik Moser
  • Publication number: 20200132582
    Abstract: A system for determining a particle contamination and a method for determining a particle contamination in a measurement environment, is provided in which individual particles in the measurement environment are detected (S1), wherein a) an estimate of the number of particles per volume in the measurement environment is ascertained (S2), b) an estimate of the number of particles per volume and characterization information describing the particle source in the measurement information are taken as a basis for ascertaining an output value for the particle contamination in the measurement environment (S3), and c) context-related data are made available and the characterization information is estimated on the basis of the available context-related data (S4).
    Type: Application
    Filed: October 21, 2019
    Publication date: April 30, 2020
    Inventors: Stefan Weiss, Alexander Herrmann, Robert Wolf, Alexander Van Der Lee, Wolfram Johannes Martin Lyda, Balazs Jatekos, Robert Weiss, Sören Sofke, Hans Spruit, Jens-Alrik Adrian, Matthias Falk, Dominik Moser
  • Publication number: 20180105799
    Abstract: A method for growing polarized endometrial cells, said method comprising: (a) disposing endometrial cells on a scaffold, said scaffold comprising a silica-based glass composition, characterized by multi-modal porosity, said scaffold being to define a top side and a bottom side; (b) providing nutrients to said top and bottom sides of said scaffold and an environment to grow polarized endometrial cells on said scaffold.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 19, 2018
    Inventors: Larry Barmat, Matthias Falk, Himanshu Jain, Stephen Somkuti
  • Patent number: 8437066
    Abstract: Method for preparing a purified crystal for use in an optical component, from an impure crystal having impurities or crystal defects capable of causing a specific absorption of incident light, includes heating the impure crystal to a temperature at which ions in the crystal are mobile and provide conductivity. A part of the crystal is illuminated with an electromagnetic purifying beam having a frequency in or near a visible frequency range so as to optically excite and migrate charges in the crystal, the charges being compensated by a counter-migration of the ions so as to be fixed in place thereafter so as to provide a purified crystal zone. The crystal is cooled to a future operating temperature.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: May 7, 2013
    Assignee: Deutsche Telekom AG
    Inventors: Karsten Buse, Matthias Falk, Daniel Haertle, Michael Koesters
  • Patent number: 8111441
    Abstract: Method for treating a nominally pure crystal having non-linear optical properties. The nominally pure crystal contain foreign atoms at a residual concentration of less than 20 ppm so as to provide specific absorption of incident light. The method includes determining, based on testing on a specifically doped reference crystal of same type as the nominally pure crystal, a threshold value. The threshold value is defined by a temperature at which a migration of ions in the nominally pure crystal to the surface of the nominally pure crystal ceases. The foreign atoms are transformed to a higher valance state by a thermally-supported oxidation process including heating the nominally pure crystal at a heating rate that increases by less than 3 ° C. per minute to a maximum temperature above the threshold value and below a Curie temperature of the nominally pure crystal. An electrical voltage is applied so as to eliminate electrons released during the oxidation process from the nominally pure crystal.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: February 7, 2012
    Assignee: Deutsche Telekom AG
    Inventors: Karsten Buse, Matthias Falk, Theo Woike
  • Patent number: 7833345
    Abstract: A method for the treatment of a crystal, such as a lithium niobate crystal or lithium tantalate crystal, having nonlinear optical properties. The crystal comprises foreign atoms which bring about specific absorption of radiated light. The foreign atoms are transformed into a lower valent state by means of oxidation. Electrons, which are released during oxidation, are discharged from the crystal with the aid of an external power source.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: November 16, 2010
    Assignee: Deutsche Telekom AG
    Inventors: Karsten Buse, Matthias Falk, Konrad Peithmann
  • Publication number: 20100195185
    Abstract: Method for preparing a purified crystal for use in an optical component, from an impure crystal having impurities or crystal defects capable of causing a specific absorption of incident light, includes heating the impure crystal to a temperature at which ions in the crystal are mobile and provide conductivity. A part of the crystal is illuminated with an electromagnetic purifying beam having a frequency in or near a visible frequency range so as to optically excite and migrate charges in the crystal, the charges being compensated by a counter-migration of the ions so as to be fixed in place thereafter so as to provide a purified crystal zone. The crystal is cooled to a future operating temperature.
    Type: Application
    Filed: January 18, 2008
    Publication date: August 5, 2010
    Applicant: DEUTSCHE TELEKOM AG
    Inventors: Karsten Buse, Matthias Falk, Daniel Haertle, Michael Koesters
  • Publication number: 20100067087
    Abstract: Method for treating a nominally pure crystal having non-linear optical properties. The nominally pure crystal contain foreign atoms at a residual concentration of less than 20 ppm so as to provide specific absorption of incident light. The method includes determining, based on testing on a specifically doped reference crystal of same type as the nominally pure crystal, a threshold value. The threshold value is defined by a temperature at which a migration of ions in the nominally pure crystal to the surface of the nominally pure crystal ceases. The foreign atoms are transformed to a higher valance state by a thermally-supported oxidation process including heating the nominally pure crystal at a heating rate that increases by less than 3° C. per minute to a maximum temperature above the threshold value and below a Curie temperature of the nominally pure crystal. An electrical voltage is applied so as to eliminate electrons released during the oxidation process from the nominally pure crystal.
    Type: Application
    Filed: March 15, 2007
    Publication date: March 18, 2010
    Applicant: Deutsche Telekom AG
    Inventors: Karsten Buse, Matthias Falk, Theo Woike
  • Publication number: 20070155004
    Abstract: A method for the treatment of a crystal, such as a lithium niobate crystal or lithium tantalate crystal, having nonlinear optical properties. The crystal comprises foreign atoms which bring about specific absorption of radiated light. The foreign atoms are transformed into a lower valent state by means of oxidation. Electrons, which are released during oxidation, are discharged from the crystal with the aid of an external power source.
    Type: Application
    Filed: September 30, 2004
    Publication date: July 5, 2007
    Inventors: Karsten Buse, Matthias Falk, Konrad Peithmann