Patents by Inventor Matthias Hoebel

Matthias Hoebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11090861
    Abstract: An additive manufacturing system includes a build platform, a plurality of particles positioned on the build platform defining a build layer, a first and second region within the build layer, and at least one consolidation device. The first region and the second region each including a portion of the plurality of particles. The at least one consolidation device is configured to consolidate the plurality of particles within the build layer into a solid, consolidated portion of said build layer. The consolidation device is further configured to consolidate at least one of the plurality of particles within the build layer and the solid, consolidated portion of the build layer into a molten volume of transfer material. The consolidation device is further configured to transfer a portion of the molten volume of transfer material within the first region from the first region to the second region.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: August 17, 2021
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, William Thomas Carter, John Broddus Deaton, Jr., John Joseph Madelone, Jr., Thomas Charles Adcock, Matthias Hoebel, Subhrajit Roychowdhury
  • Patent number: 11077512
    Abstract: A manufactured article is comprised of an additively manufactured component having sequentially joined layers of metallic powder. A braze material is disposed on at least a portion of an outer surface of the component. The braze material is located in expected crack locations in the outer surface. At least one crack formed in the outer surface, during a heat treatment, is filled with the braze material. The additively manufactured component comprises a metallic material from a precipitation hardened nickel-based superalloy, which forms a ?? phase.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: August 3, 2021
    Assignee: General Electric Company
    Inventors: Sabrina Michelle Puidokas, Matthias Hoebel, Jan Vladimir Schwerdtfeger, Thomas Etter
  • Patent number: 10821551
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device simultaneously modulates the intensity of the laser beam to facilitate reducing spatter and to facilitate reducing a temperature of the melt pool to reduce overheating of the melt pool.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 3, 2020
    Assignee: General Electronic Company
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Michael Evans Graham, Robert John Filkins, Felix Martin Gerhard Roerig, Donnell Eugene Crear, Prabhjot Singh
  • Patent number: 10814429
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device is configured to simultaneously modulate the intensity of the laser beam to thermally control the melt pool.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Lang Yuan, Prabhjot Singh, Michael Evans Graham, Robert John Filkins, Thomas Etter, Felix Martin Gerhard Roerig
  • Patent number: 10801098
    Abstract: A method of coating a component using a robotic spray system is provided. The robotic spray system includes a scanning apparatus operable to measure and store surface characteristics before and after coating; a robotic arm operable to move the robotic spray system relative to a surface of a component, the component including one or more reference features which remains uncoated during the coating; a spray nozzle operable to deposit a sprayed coating onto the surface; and a device driver module including circuitry configured to operate the scanning apparatus, the robotic arm, and the spray nozzle.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: October 13, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Gerhart Hanson, Matthias Hoebel, Martin Lewis Smith
  • Patent number: 10801352
    Abstract: The invention concerns a turbine for a gas turbine comprising a blade, a vane and an abradable lip attached to the blade or to the vane, wherein the blade and the vane are separated by a gap and the abradable lip extends part of the distance across the gap. Embodiments include the addition of an abrasive layer attached on the other side of the gap from the abradable lip. A method of manufacturing is also described.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: October 13, 2020
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Guillaume Wagner, Herbert Brandl, Emanuele Facchinetti, Matthias Hoebel, Carlos Simon-Delgado
  • Publication number: 20200254547
    Abstract: A manufactured article is comprised of an additively manufactured component having sequentially joined layers of metallic powder. A braze material is disposed on at least a portion of an outer surface of the component. The braze material is located in expected crack locations in the outer surface. At least one crack formed in the outer surface, during a heat treatment, is filled with the braze material. The additively manufactured component comprises a metallic material from a precipitation hardened nickel-based superalloy, which forms a ?? phase.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Applicant: General Electric Company
    Inventors: Sabrina Michelle Puidokas, Matthias Hoebel, Jan Vladimir Schwerdtfeger, Thomas Etter
  • Patent number: 10695832
    Abstract: A method for manufacturing a mechanical component by additive manufacturing which includes at least one layering sequence of depositing a powder material and locally melting and resolidifying the powder material. In each layering sequence, a solid layer of solidified material is formed, wherein the solid layers jointly form a solid body. An annealing sequence subsequent to at least one layering sequence includes, locally heating at least a region of the solid body in effecting a local heat input to the immediately beforehand manufactured solid layer which was formed by the immediately precedent layering sequence, with temperature being is maintained below a melting temperature of the material.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: June 30, 2020
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: Matthias Hoebel, Mikhail Pavlov, Thomas Etter, Roman Engeli
  • Patent number: 10695866
    Abstract: In some cases, an additive manufacturing (AM) system includes: a process chamber for additively manufacturing a component, the process chamber having: a build platform; at least one melting beam scanner configured to emit a melting beam for melting powder on the build platform; an applicator for applying layers of powder to the build platform; and a reservoir for storing powder; and a control system coupled with the set of melting beam scanners, the control system configured to: apply the melting beam to a layer of powder on the build platform along a primary melting path; and apply the melting beam to the layer of powder on the build platform along a re-melting path after applying the melting beam along the primary melting path, the re-melting path overlapping a portion of the primary melting path and applied only in an area proximate a perimeter of the component.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventors: Felix Martin Gerhard Roerig, Thomas Etter, Matthias Hoebel, Julius Andreas Schurb
  • Patent number: 10695867
    Abstract: Controlling microstructure in an object created by metal powder additive manufacturing is disclosed. During additive manufacturing of one or more objects using an irradiation beam source system, for each respective layer in a selected range of layers including a cross-sectional area of the one or more objects including the selected object, a duration controller controls actuation of each irradiation device to maintain constant a sum of: an irradiation device melting time, an irradiation device idle time, and a recoating time expended applying a new powder material layer, while otherwise maintaining all other operation parameters of each irradiation device constant.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventors: Thomas Etter, Matthias Hoebel, Felix Martin Gerhard Roerig
  • Publication number: 20200031042
    Abstract: An additive manufacturing system includes a build platform, a plurality of particles positioned on the build platform defining a build layer, a first and second region within the build layer, and at least one consolidation device. The first region and the second region each including a portion of the plurality of particles. The at least one consolidation device is configured to consolidate the plurality of particles within the build layer into a solid, consolidated portion of said build layer. The consolidation device is further configured to consolidate at least one of the plurality of particles within the build layer and the solid, consolidated portion of the build layer into a molten volume of transfer material. The consolidation device is further configured to transfer a portion of the molten volume of transfer material within the first region from the first region to the second region.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Inventors: Michael Evans Graham, William Thomas Carter, John Broddus Deaton, JR., John Joseph Madelone, JR., Thomas Charles Adcock, Matthias Hoebel, Subhrajit Roychowdhury
  • Patent number: 10502058
    Abstract: A coupon for replacing a cutout in a hot gas path component of a turbomachine is provided. In one embodiment, the coupon includes a body having an outer surface; and a plurality of grinding depth indicators in the outer surface of the body. In another embodiment, the coupon includes a body having an edge periphery configured to mate with an edge periphery of the cutout, and at least a portion of the edge periphery of the body has a wall thickness greater than a wall thickness of an edge periphery of the cutout. The embodiments may be used together or separately.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: December 10, 2019
    Assignee: General Electric Company
    Inventors: Hinde Chabane, Matthias Hoebel
  • Publication number: 20190275613
    Abstract: Controlling microstructure in an object created by metal powder additive manufacturing is disclosed. During additive manufacturing of one or more objects using an irradiation beam source system, for each respective layer in a selected range of layers including a cross-sectional area of the one or more objects including the selected object, a duration controller controls actuation of each irradiation device to maintain constant a sum of: an irradiation device melting time, an irradiation device idle time, and a recoating time expended applying a new powder material layer, while otherwise maintaining all other operation parameters of each irradiation device constant.
    Type: Application
    Filed: March 8, 2018
    Publication date: September 12, 2019
    Inventors: Thomas Etter, Matthias Hoebel, Felix Martin Gerhard Roerig
  • Publication number: 20190232428
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device is configured to simultaneously modulate the intensity of the laser beam to thermally control the melt pool.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 1, 2019
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Lang Yuan, Prabhjot Singh, Michael Evans Graham, Robert John Filkins, Thomas Etter, Felix Martin Gerhard Roerig
  • Publication number: 20190232427
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device simultaneously modulates the intensity of the laser beam to facilitate reducing spatter and to facilitate reducing a temperature of the melt pool to reduce overheating of the melt pool.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 1, 2019
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Michael Evans Graham, Robert John Filkins, Felix Martin Gerhard Roerig, Donnell Eugene Crear, Prabhjot Singh
  • Patent number: 10337335
    Abstract: The invention refers to a method for selective laser melting additive manufacturing a three-dimensional metallic or ceramic article/component entirely or partly. The method includes successively building up said article/component layer by layer directly from a powder bed of a metallic or ceramic base material by means of remelting the layers with a high energy laser beam, moving repetitively across the areas, which are to be solidified. The movement of the laser beam is made of a superposition of a continuous linear movement and at least one superimposed oscillation with a determined frequency and amplitude. The oscillation is created by a beam deflection device and the same beam deflection device is also used for linear positioning movement.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: July 2, 2019
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: Mikhail Pavlov, Matthias Hoebel, Felix Roerig, Julius Schurb
  • Publication number: 20190161844
    Abstract: A method of coating a component using a robotic spray system is provided. The robotic spray system includes a scanning apparatus operable to measure and store surface characteristics before and after coating; a robotic arm operable to move the robotic spray system relative to a surface of a component, the component including one or more reference features which remains uncoated during the coating; a spray nozzle operable to deposit a sprayed coating onto the surface; and a device driver module including circuitry configured to operate the scanning apparatus, the robotic arm, and the spray nozzle.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Gerhart HANSON, Matthias HOEBEL, Martin Lewis SMITH
  • Patent number: 10259720
    Abstract: A coated substrate is described including a substrate material, which is coated at least in part with an oxidation-resistant coating, wherein the coating consists of a wear-resistant abrasive coating layer, which contains or consists of coated abrasive particles embedded in an oxidation-resistant matrix material, wherein at least some of the abrasive particles consist of ?-Al2O3 and the abrasive particles are coated with a first particle coating layer disposed on the abrasive particles and an optional second particle coating layer disposed on the first particle coating layer, wherein the matrix material contains or consists of the compound MCrAlY, wherein M is at least one element selected from the group consisting of Ni, Co and Fe. A method for manufacturing such a coated substrate is also disclosed.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: April 16, 2019
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Werner Martin Balbach, Wilhelm Ebeling, Matthias Hoebel
  • Publication number: 20180304406
    Abstract: In some cases, an additive manufacturing (AM) system includes: a process chamber for additively manufacturing a component, the process chamber having: a build platform; at least one melting beam scanner configured to emit a melting beam for melting powder on the build platform; an applicator for applying layers of powder to the build platform; and a reservoir for storing powder; and a control system coupled with the set of melting beam scanners, the control system configured to: apply the melting beam to a layer of powder on the build platform along a primary melting path; and apply the melting beam to the layer of powder on the build platform along a re-melting path after applying the melting beam along the primary melting path, the re-melting path overlapping a portion of the primary melting path and applied only in an area proximate a perimeter of the component.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 25, 2018
    Inventors: Felix Martin Gerhard Roerig, Thomas Etter, Matthias Hoebel, Julius Andreas Schurb
  • Publication number: 20180099331
    Abstract: A method for manufacturing a mechanical component by additive manufacturing which includes at least one layering sequence of depositing a powder material and locally melting and resolidifying the powder material. In each layering sequence, a solid layer of solidified material is formed, wherein the solid layers jointly form a solid body. An annealing sequence subsequent to at least one layering sequence includes, locally heating at least a region of the solid body in effecting a local heat input to the immediately beforehand manufactured solid layer which was formed by the immediately precedent layering sequence, with temperature being is maintained below a melting temperature of the material.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 12, 2018
    Applicant: ANSALDO ENERGIA IP UK LIMITED
    Inventors: Matthias HOEBEL, Mikhail PAVLOV, Thomas ETTER, Roman ENGELI