Patents by Inventor Matthias Illing

Matthias Illing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060063293
    Abstract: Described is a method for manufacturing a micromechanical sensor element and a micromechanical sensor element manufactured in particular using such a method which has a hollow space or a cavity and a membrane for detecting a physical variable. Different method steps are performed for manufacturing the sensor element, among other things, a structured etch mask having a plurality of holes or apertures being applied on a semiconductor substrate. Moreover, an etch process is used to create depressions in the semiconductor substrate beneath the holes in the structured etch mask. Anodization of the semiconductor material is subsequently carried out, the anodization taking place preferably starting from the created depressions in the semiconductor substrate. Due to this process, porous areas are created beneath the depressions, a lattice-like structure made of untreated, i.e., non-anodized, substrate material remaining between the porous areas and the depressions.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 23, 2006
    Inventors: Hubert Benzel, Stefan Finkbeiner, Matthias Illing, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20060057816
    Abstract: A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 16, 2006
    Inventors: Hubert Benzel, Stefan Finkbeiner, Matthias Illing, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Patent number: 6989609
    Abstract: An apparatus for supplying energy to a sensor co-moved with a wheel of a vehicle, which contains a generator co-moved with the wheel of the vehicle, the generator generating electrical energy from vibrational motions of the vehicle.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: January 24, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Jiri Marek, Matthias Illing, Hans-Peter Trah, Oliver Schatz
  • Publication number: 20040212195
    Abstract: An apparatus for supplying energy to a sensor co-moved with a wheel of a vehicle, which contains a generator co-moved with the wheel of the vehicle, the generator generating electrical energy from vibrational motions of the vehicle.
    Type: Application
    Filed: April 26, 2004
    Publication date: October 28, 2004
    Inventors: Jiri Marek, Matthias Illing, Hans-Peter Trah, Oliver Schatz
  • Patent number: 6739193
    Abstract: A micromechanical structure and a corresponding manufacturing method. The structure includes a substrate, which includes an anchoring device, and a centrifugal mass, which is connected to the anchoring device via a flexible spring device, so that the centrifugal mass is elastically deflectable from its rest position. The centrifugal mass includes clearances and is configured to be deflectable by etching a sacrificial layer underneath it. The sacrificial layer is present in a first area located underneath the centrifugal mass with a first etchable thickness, and in a second area located underneath the centrifugal mass with a second etchable thickness, the second thickness is greater than the first thickness. The centrifugal mass is structured in the first area so that in etching only a maximum of two etching fronts may come together in order to limit the etching residue deposits.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: May 25, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Franz, Matthias Illing, Frank Henning, Frank Fischer, Peter Hein
  • Publication number: 20030115960
    Abstract: A micromechanical structure and a corresponding manufacturing method are described. The structure includes a substrate (10), which has an anchoring device (20), and a centrifugal mass (30), which is connected to the anchoring device (20) via a flexible spring device (40), so that the centrifugal mass (30) is elastically deflectable from its rest position. The centrifugal mass (30) has clearances and is designed to be deflectable by etching a sacrificial layer (50) underneath it. The sacrificial layer (50) is present in a first area located underneath the centrifugal mass (30) with a first etchable thickness (d1), and in a second area located underneath the centrifugal mass (30) with a second etchable thickness (d1+d2+d3), the second thickness being greater than the first thickness (d1). The centrifugal mass (30) is structured in the first area so that in etching only a maximum of two etching fronts may come together in order to limit the etching residue deposits.
    Type: Application
    Filed: October 28, 2002
    Publication date: June 26, 2003
    Inventors: Jochen Franz, Matthias Illing, Frank Henning, Frank Fischer, Peter Hein
  • Patent number: 6360605
    Abstract: A micromechanical device, in particular an acceleration sensor, includes a seismic mass which is resiliently supported on a substrate via a first flexural spring device and which can be deflected in at least one direction by an acceleration, the deflection being able to be limited by a stop device. The stop device has at least one limit stop that is resiliently supported on the substrate via a second flexural spring device, the second flexural spring device having a greater flexural strength than the first flexural spring device.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: March 26, 2002
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Pinter, Martin Schoefthaler, Matthias Illing, Ralf Schellin, Helmut Baumann, Michael Fehrenbach, Dietrich Schubert, Georg Bischopink