Patents by Inventor Matthias J. Schmand

Matthias J. Schmand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230288508
    Abstract: A PET system for a PET/MRI machine is disclosed. The PET system includes a PET detector assembly arranged to form a single gap aligned with the high-density support structure assembly and the shielded cable assembly that run along the patient bed in the PET/MRI machine. The PET detector arrangement maximizes the allowable diameter of the PET system within the MR magnet and ensures that the high-density material does not interfere with image acquisition. Further, various image reconstruction techniques compatible with the PET detector arrangement are described.
    Type: Application
    Filed: September 11, 2020
    Publication date: September 14, 2023
    Inventors: Matthias J. Schmand, Paul Schleyer, James L. Corbeil, Vladimir Panin
  • Publication number: 20230049556
    Abstract: Systems and methods of PET attenuation correction using low-field MR image data includes receiving a first set of image data and a set of low-field magnetic resonance (MR) image data. An attenuation correction map is generated from the low-field MR image data using a first trained neural network. At least one attenuation correction process is applied to the first set of image data based on the attenuation correction map to generate at least one clinical attenuation-corrected image.
    Type: Application
    Filed: May 6, 2020
    Publication date: February 16, 2023
    Inventors: Bruce Spottiswoode, Sven Zuehlsdorff, Matthias J. Schmand
  • Patent number: 11555147
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 17, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 11107600
    Abstract: The present disclosure discloses rare earth metal halide scintillators compositions with reduced hygroscopicity. Compositions in specific implementations include three group of elements: Lanthanides, (La, Ce, Lu, Gd or V), elements in group 17 of the periodic table of elements (CI, Br and I) and elements of group 13 (B, AI, Ga, In, TI), and any combination of these elements. Examples of methods for making the compositions are also disclosed.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 31, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, A. Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 10557947
    Abstract: A detector, includes a plurality of photomultiplier tubes each having an anode configured to generate an anode output signal and a frequency domain detector interface including a plurality of frequency domain coupling circuits. Each of the plurality of frequency domain coupling circuits is configured to receive the anode output signal from one of the plurality of photomultiplier tubes and pickoff one of a high-frequency component or a low-frequency component. Each of the plurality of frequency domain coupling circuits is further configured to generate a pass-through signal comprising a first of the high-frequency component or the low-frequency component.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: February 11, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nan Zhang, Matthias J. Schmand
  • Patent number: 10267931
    Abstract: A radiation detector comprises a first scintillator having a first peak wavelength and a second scintillator positioned on the first scintillator. The second scintillator has a second peak wavelength different from the first peak wavelength. A plurality of photon detectors are provided. The first scintillator is positioned over and contacts each of the plurality of photon detectors. The plurality of photon detectors include first detectors and second detectors. The second detectors differ from the first detectors in doping profile, pn junction depth, or front-versus-backside illumination geometry. The first detectors are more sensitive to the first peak wavelength than the second peak wavelength. The second detectors are more sensitive to the second peak wavelength than the first detectors.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 23, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Johannes Breuer, Maciej P. Kapusta, Matthias J. Schmand
  • Patent number: 10150914
    Abstract: Disclosed herein is a scintillator comprising a plurality of garnet compositions in a single block having the structural formula (1): M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of 2 to 3.5, “b” has a value of 0 to 5, “c” has a value of 0 to 5 “d” has a value of 0 to 1, where “b” and “c”, “b” and “d” or “c” and “d” cannot both be equal to zero simultaneously, where M1 is rare earth element including gadolinium, yttrium, lutetium, or a combination thereof, M2 is aluminum or boron, M3 is gallium and M4 is a codopant; wherein two compositions having identical structural formulas are not adjacent to each other and wherein the single block is devoid of optical interfaces between different compositions.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 11, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Robert A. Mintzer, Peter Carl Cohen, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 10128801
    Abstract: A detector system for time-of-flight (TOF) positron emission topography (PET) includes an analog silicon photomultiplier (aSiPM) configured to detect at least one photon event. The aSiPM has an anode and a cathode. A transformer has a first side electrically coupled to the aSiPM to form a low-impedance current loop between the anode and the cathode of the transformer. An impedance ratio of the transformer N reduces an effective terminal resistance of the aSiPM. An amplifier is electrically coupled to a second side of the transformer. The amplifier has negative feedback path configured to minimize the voltage swing between a non-inverting input and an inverting input. The negative feedback path reduces an effective terminal capacitance and an effective load impedance of the aSiPM.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: November 13, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nan Zhang, Matthias J. Schmand
  • Publication number: 20180223186
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 10036790
    Abstract: APD-based PET modules are provided for use in combined PET/MR imaging. Each module includes a number of independent, optically isolated detectors. Each detector includes an array of scintillator (e.g. LSO) crystals read out by an array of APDs. The modules are positioned in the tunnel of a MR scanner. Simultaneous, artifact-free images can be acquired with the APD-based PET and MR system resulting in a high-resolution and cost-effective integrated PET/MR system.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 31, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Matthias J. Schmand, Ronald Grazioso, Ronald Nutt, Robert E. Nutt, Nan Zhang, James L. Corbeil, Ralf Ladebeck, Marcus Vester, Günter Schnur, Wolfgang Renz, Hubertus Fischer, Bernd J. Pichler
  • Patent number: 10000698
    Abstract: In one embodiment, a method includes forming a powder having a composition with the formula: AhBiCjO12, where h is 3±10%, i is 2±10%, j is 3±10%, A includes one or more rare earth elements, B includes aluminum and/or gallium, and C includes aluminum and/or gallium. The method additionally includes consolidating the powder to form an optically transparent ceramic, and applying at least one thermodynamic process condition during the consolidating to reduce oxygen and/or thermodynamically reversible defects in the ceramic. In another embodiment, a scintillator includes (Gd3-a-cYa)x(Ga5-bAlb)yO12Dc, where a is from about 0.05-2, b is from about 1-3, x is from about 2.8-3.2, y is from about 4.8-5.2, c is from about 0.003-0.3, and D is a dopant, and where the scintillator is an optically transparent ceramic scintillator having physical characteristics of being formed from a ceramic powder consolidated in oxidizing atmospheres.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: June 19, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Nerine Cherepy, Stephen A. Payne, Zachary Seeley, Peter Carl Cohen, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 9966162
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: May 8, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Piotr Szupryczynski, A. Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 9778383
    Abstract: A nuclear imaging system includes a detector configured to detect at least one photon event. A timing signal path is electrically coupled to the detector. The timing signal path is configured to generate a timing signal indicative of a timing of the at least one photon event. An energy signal path is also electrically coupled to the detector. The energy signal path is configured to generate an energy signal indicative of an energy of the at least one photon event. A time-domain multiplexer is configured combine the timing signal and the energy signal into a compound signal.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: October 3, 2017
    Assignees: Siemens Medical Solutions USA, Inc., Siemens Healthcare GmbH
    Inventors: Matthias J. Schmand, Ralph Oppelt, Klaus Huber, Nan Zhang
  • Publication number: 20170260448
    Abstract: In one embodiment, a method includes forming a powder having a composition with the formula: AhBiCjO12, where h is 3±l 0%, i is 2=10%, j is 3±10%, A includes one or more rare earth elements, B includes aluminum and/or gallium, and C includes aluminum and/or gallium. The method additionally includes consolidating the powder to form an optically transparent ceramic, and applying at least one thermodynamic process condition during the consolidating to reduce oxygen and/or thermodynamically reversible defects in the ceramic. In another embodiment, a scintillator includes (Gd3-a-cYa)x(Ga5-bAlb)yO12Dc, where a is from about 0.05-2, b is from about 1-3, x is from about 2.8-3.2, y is from about 4.8-5.2, c is from about 0.003-0.3, and D is a dopant, and where the scintillator is an optically transparent ceramic scintillator having physical characteristics of being formed from a ceramic powder consolidated in oxidizing atmospheres.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 14, 2017
    Inventors: Nerine Cherepy, Stephen A. Payne, Zachary Seeley, Peter Carl Cohen, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 9664800
    Abstract: A scintillator element is disclosed where the scintillator element includes a scintillator formed of a scintillation material capable of converting non-visible radiation into scintillation light, wherein the scintillator has a plurality of laser-etched micro-voids within the scintillator, each micro-void having an interior surface, and an intrinsic reflective layer is formed on the interior surface of at least some of the micro-voids, wherein the intrinsic reflective layer is formed from the scintillation material.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: May 30, 2017
    Assignees: University of Tennessee Research Foundation, Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Matthias J. Schmand, James L. Corbeil, Alexander Andrew Carey, Robert A. Mintzer, Charles L. Melcher, Merry A. Koschan
  • Publication number: 20170145305
    Abstract: Disclosed herein is a method including disposing in a mold a powder that has a composition for manufacturing a scintillator material and compressing the powder to form the scintillator material; where an exit surface of the scintillator material has a texture that comprises a plurality of projections that reduce total internal reflection at the exit surface and that increase the amount of photons exiting the exit surface by an amount of greater than or equal to 5% over a surface that does not have the projections.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Inventors: Peter Carl Cohen, Robert A. Mintzer, Mark S. Andreaco, Matthias J. Schmand, Christof Thalhammer, Harry Hedler
  • Publication number: 20170145307
    Abstract: Disclosed herein is a scintillator comprising a plurality of garnet compositions in a single block having the structural formula (1): M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of 2 to 3.5, “b” has a value of 0 to 5, “c” has a value of 0 to 5 “d” has a value of 0 to 1, where “b” and “c”, “b” and “d” or “c” and “d” cannot both be equal to zero simultaneously, where M1 is rare earth element including gadolinium, yttrium, lutetium, or a combination thereof, M2 is aluminum or boron, M3 is gallium and M4 is a codopant; wherein two compositions having identical structural formulas are not adjacent to each other and wherein the single block is devoid of optical interfaces between different compositions.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Inventors: Robert A. Mintzer, Peter Carl Cohen, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 9650569
    Abstract: Disclosed herein is a method including disposing in a mold a powder that has a composition for manufacturing a scintillator material and compressing the powder to form the scintillator material; where an exit surface of the scintillator material has a texture that comprises a plurality of projections that reduce total internal reflection at the exit surface and that increase the amount of photons exiting the exit surface by an amount of greater than or equal to 5% over a surface that does not have the projections.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: May 16, 2017
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, Robert A. Mintzer, Mark S. Andreaco, Matthias J. Schmand, Christof Thalhammer, Harry Hedler
  • Patent number: 9606199
    Abstract: An automated blood sampling system for PET imaging applications that can be operated in or very near to the field of view (FOV) of an MR scanner, such as in a combined MR/PET imaging system. A radiation detector uses APDs (avalanche photo-diodes) to collect scintillation light from crystals in which the positron-electron annihilation photons are absorbed. The necessary gamma shielding is made from a suitable shielding material, preferably tungsten polymer composite. Because the APDs are quite small and are magnetically insensitive, they can be operated in the strong magnetic field of an MR apparatus without disturbance.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 28, 2017
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Johannes Breuer, Ronald Grazioso, James Corbeil, Nan Zhang, Matthias J. Schmand
  • Publication number: 20170074996
    Abstract: A nuclear imaging system includes a detector configured to detect at least one photon event. A timing signal path is electrically coupled to the detector. The timing signal path is configured to generate a timing signal indicative of a timing of the at least one photon event. An energy signal path is also electrically coupled to the detector. The energy signal path is configured to generate an energy signal indicative of an energy of the at least one photon event. A time-domain multiplexer is configured combine the timing signal and the energy signal into a compound signal.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 16, 2017
    Inventors: Matthias J. Schmand, Ralph Oppelt, Klaus Huber, Nan Zhang