Patents by Inventor Matthias Lütolf

Matthias Lütolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130040357
    Abstract: The present invention relates to a hydrogel precursor formulation, its process of production as well as a kit comprising said formulation and a method of production of a hydrogel using said formulation. The precursor formulation comprises at least one structural compound, preferably vinyl sulfone (acrylated branched) poly(ethylene glycol), and at least one linker compound, preferably a peptide with two cysteines, wherein said structural compound and said linker compound are polymerizable by a selective reaction between a nucleophile and a conjugated unsaturated bond or group. The precursor formulation is in the form of a powder.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 14, 2013
    Applicant: QGEL SA
    Inventors: Simone Rizzi, Matthias Lutolf
  • Patent number: 8034618
    Abstract: Proteins are incorporated into protein or polysaccharide matrices for use in tissue repair, regeneration and/or remodeling and/or drug delivery. The proteins can be incorporated so that they are released by degradation of the matrix, by enzymatic action and/or diffusion. As demonstrated by the examples, one method is to bind heparin to the matrix by either covalent or non-covalent methods, to form a heparin-matrix. The heparin then non-covalently binds heparin-binding growth factors to the protein matrix. Alternatively, a fusion protein can be constructed which contains a crosslinking region such as a factor XIIIa substrate and the native protein sequence. Incorporation of degradable linkages between the matrix and the bioactive factors can be particularly useful when long-term drug delivery is desired, for example in the case of nerve regeneration, where it is desirable to vary the rate of drug release spatially as a function of regeneration, e.g.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 11, 2011
    Assignees: Eldgenossische Technische Hochschule Zurich, Universitat Zurich
    Inventors: Matthias Lutolf, Jason C. Schense, Jeffrey A. Hubbell, Anna Jen
  • Patent number: 7744912
    Abstract: The invention features polymeric biomaterials formed by nucleophilic addition reactions to conjugated unsaturated groups. These biomaterials may be used for medical treatments.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: June 29, 2010
    Assignees: Eidgenossische Technische Hochschule Zurich, Universitat Zurich
    Inventors: Jeffrey A. Hubbell, Donald Elbert, Matthias Lütolf, Alison Pratt, Ronald Schoenmakers, Nicola Tirelli, Brent Vernon
  • Publication number: 20070264227
    Abstract: Biomaterials containing a three-dimensional polymeric network formed from the reaction of a composition containing at least a first synthetic precursor molecule having n nucleophilic groups and a second precursor molecule having m electrophilic groups wherein the sum of n+m is at least five and wherein the sum of the weights of the first and second precursor molecules is in a range from about 8 to about 16% b weight of the composition, preferably from about 10 to about 15%, more preferably from about 12 to about 14.5% by weight of the composition. In one embodiment, the first and second precursor molecules are polyethylene glycols functionalized with nucleophilic and electrophilic groups, respectively. In a preferred embodiment, the nucleophilic groups are amino and/or thiol groups and the electrophilic groups are conjugated, unsaturated groups.
    Type: Application
    Filed: April 13, 2007
    Publication date: November 15, 2007
    Inventors: Matthias Lutolf, Jason Schense, Anna Jen, Marina Capone, Jeffrey Hubbell
  • Publication number: 20070179093
    Abstract: Proteins are incorporated into protein or polysaccharide matrices for use in tissue repair, regeneration and/or remodeling and/or drug delivery. The proteins can be incorporated so that they are released by degradation of the matrix, by enzymatic action and/or diffusion. As demonstrated by the examples, one method is to bind heparin to the matrix by either covalent or non-covalent methods, to form a heparin-matrix. The heparin then non-covalently binds heparin-binding growth factors to the protein matrix. Alternatively, a fusion protein can be constructed which contains a crosslinking region such as a factor XIIIa substrate and the native protein sequence. Incorporation of degradable linkages between the matrix and the bioactive factors can be particularly useful when long-term drug delivery is desired, for example in the case of nerve regeneration, where it is desirable to vary the rate of drug release spatially as a function of regeneration, e.g.
    Type: Application
    Filed: February 27, 2007
    Publication date: August 2, 2007
    Inventors: Matthias Lutolf, Jason Schense, Jeffrey Hubbell, Anna Jen
  • Patent number: 7247609
    Abstract: Proteins are incorporated into protein or polysaccharide matrices for use in tissue repair, regeneration and/or remodeling and/or drug delivery. The proteins can be incorporated so that they are released by degradation of the matrix, by enzymatic action and/or diffusion. As demonstrated by the examples, one method is to bind heparin to the matrix by either covalent or non-covalent methods, to form a heparin-matrix. The heparin then non-covalently binds heparin-binding growth factors to the protein matrix. Alternatively, a fusion protein can be constructed which contains a crosslinking region such as a factor XIIIa substrate and the native protein sequence. Incorporation of degradable linkages between the matrix and the bioactive factors can be particularly useful when long-term drug delivery is desired, for example in the case of nerve regeneration, where it is desirable to vary the rate of drug release spatially as a function of regeneration, e.g.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: July 24, 2007
    Assignees: Universitat Zurich, Eidgenossische Technische Hochschule Zurich
    Inventors: Matthias Lütolf, Jason Schense, Jeffrey A. Hubbell, Anna Jen
  • Publication number: 20060147443
    Abstract: Synthetic biomaterials containing bioactive factors or modified bioactive factors that are covalently bound to the synthetic precursor components and/or biomaterials by an enzymatically degradable linkage are described herein. Further described are methods to covalently bind bioactive factors to synthetic biomaterials by means of enzymatic catalysis, the biomaterials produced therewith and the bioactive factors necessary for practicing these methods. The bioactive factors contain an amino acid sequence which can serve as a substrate domain for cross-linkable enzymes. The enzyme catalyzes the cross-linking reaction between the substrate domain of the bioactive factor and functional groups of the synthetic precursor components capable of forming the biomaterial and/or synthetic biomaterial susceptible to an enzymatically catalyzed cross-linking reaction.
    Type: Application
    Filed: December 22, 2005
    Publication date: July 6, 2006
    Inventors: Jason Schense, Didier Cowling, Matthias Lutolf, Annemie Rehor
  • Publication number: 20030166833
    Abstract: Proteins are incorporated into protein or polysaccharide matrices for use in tissue repair, regeneration and/or remodeling and/or drug delivery. The proteins can be incorporated so that they are released by degradation of the matrix, by enzymatic action and/or diffusion. As demonstrated by the examples, one method is to bind heparin to the matrix by either covalent or non-covalent methods, to form a heparin-matrix. The heparin then non-covalently binds heparin-binding growth factors to the protein matrix. Alternatively, a fusion protein can be constructed which contains a crosslinking region such as a factor XIIIa substrate and the native protein sequence. Incorporation of degradable linkages between the matrix and the bioactive factors can be particularly useful when long-term drug delivery is desired, for example in the case of nerve regeneration, where it is desirable to vary the rate of drug release spatially as a function of regeneration, e.g.
    Type: Application
    Filed: December 18, 2002
    Publication date: September 4, 2003
    Applicant: Eidgenossische Technische Hochschule Zurich
    Inventors: Matthias Lutolf, Jason C. Schense, Jeffrey A. Hubbell, Anna Jen