Patents by Inventor Matthias LEVEN

Matthias LEVEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250019514
    Abstract: The present invention relates to a process for hydrolysis of carbonates, in particular polycarbonates, in the presence of at least one phase-transfer catalyst. The process according to the invention makes it possible to recover valuable raw materials from industrially produced carbonates, in particular polycarbonates, once these have fulfilled their original intended purpose. It thus avoids a loss of such raw materials, such as would arise in the event of disposal by incineration or landfill for instance.
    Type: Application
    Filed: October 20, 2022
    Publication date: January 16, 2025
    Inventors: Matthias Leven, Norah Heinz, Jens Langanke, Torsten Heinemann, Kai Laemmerhold, Martin Tabak, Tugrul Nalbantoglu, Walter Leitner
  • Publication number: 20240409492
    Abstract: The invention relates to a method for cleaving urethanes, in particular polyurethanes, by means of chemolysis (alcoholysis, hydrolysis, or hydroalcoholysis) in the presence of a catalyst. The chemolysis is characterized in that a salt of an oxyacid of an element of the fifth, fourteenth, or fifteenth group of the periodic table of elements or a mixture of two or more such salts is used as the catalyst, the pKb value of the anion of said salt of the oxyacid ranging from 0.10 to 6.00, preferably 0.25 to 5.00, particularly 0.50 to 4.50, wherein the catalyst does not comprise carbonate when the chemolysis is carried out as an alcoholysis (Ia), and the catalyst does not contain carbonate, orthophosphate, or metaphosphate when the chemolysis is carried out as a hydroalcoholysis.
    Type: Application
    Filed: October 26, 2022
    Publication date: December 12, 2024
    Inventors: Matthias Leven, Norah Heinz, Jens Langanke, Torsten Heinemann, Kai Laemmerhold, Dirk Hinzmann, Tugrul Nalbantoglu, Nicolas Vogt, Walter Leitner, Elena Dirksen
  • Publication number: 20240375091
    Abstract: The invention relates to a first epoxydation catalyst system comprising a mixture of a metal salt of the metals chromium, manganese, molybdenum, lead and/or bismuth and a hydroxide as well as of a redox-active compound. The invention also relates to an additional second epoxydation catalyst system comprising a mixture of an additional metal salt, iodine and a hydroxide. Furthermore, the invention relates to a process for preparing epoxides comprising the oxidative reaction of an alkene in a reactor in the presence of the first epoxydation catalyst system or the second epoxydation catalyst system.
    Type: Application
    Filed: June 13, 2022
    Publication date: November 14, 2024
    Inventors: Matthias Leven, Jens Langanke
  • Publication number: 20240309169
    Abstract: The invention relates to a method for producing monomers and/or oligomers from a polymer that includes a structural unit having a nitrogen-carbonyl carbon bond. The nitrogen-carbonyl carbon bond is broken in a chemical reaction with formaldehyde or paraformaldehyde as the activating reagent. The reaction takes place using a Lewis acid acting as a catalyst. The invention also relates to monomers, in particular a carboxylic acid monomer and an aldimine monomer or an amine monomer, obtained or produced from this method.
    Type: Application
    Filed: July 4, 2022
    Publication date: September 19, 2024
    Inventors: Matthias Leven, Norah Heinz, Jens Langanke, Torsten Heinemann, Tzvetan Mihaylov, Kai Laemmerhold, Nicklas Deibl, Tugrul Nalbantoglu
  • Publication number: 20240308970
    Abstract: The invention relates to a method for producing alkylene oxides by reacting an alkene with an arene oxide, pyridine-N-oxide, and/or pyrimidine-N-oxide, preferably an arene oxide and/or pyridine-N-oxide, in the presence of a catalyst in a first reactor, wherein the catalyst comprises a metal and/or a metal salt, and the metal is copper, silver, and/or gold. The metal salt comprises chrome, iron, cobalt, and/or copper cation(s), and the reaction is carried out in the absence of oxygen or an oxygen-containing gas mixture.
    Type: Application
    Filed: June 28, 2022
    Publication date: September 19, 2024
    Inventors: Matthias Leven, Norah Heinz, Ulrich Liman, Jens Langanke, Torsten Heinemann
  • Publication number: 20230303757
    Abstract: Disclosed are HCFO-containing isocyanate-reactive compositions that include a tertiary amine oxide catalyst. Also described are foam-forming compositions containing such isocyanate-reactive compositions, rigid foams made using such foam-forming compositions, and methods for producing such foams, including use of such foams as insulation in discontinuous foam panel applications. The isocyanate-reactive composition can exhibit a long shelf life, be shelf-stable, and produce foam with good physical properties.
    Type: Application
    Filed: February 21, 2023
    Publication date: September 28, 2023
    Inventors: Matthias Leven, Sascha Froebel, Jose Gamez, Brandon Parks, Tohru Matsumura, Rolf Albach
  • Publication number: 20220204465
    Abstract: A process for the carbonylation of epoxides in the presence of catalyst systems, wherein the carbonylation takes place in the presence of carbon monoxide, and wherein the catalyst system contains a molybdenum-based compound. Carbonylation products as well as carbonylation derivatives and to the use of the claimed catalyst systems for the carbonylation of epoxides are also provided.
    Type: Application
    Filed: June 5, 2020
    Publication date: June 30, 2022
    Inventors: Jens Langanke, Matthias Leven, Christoph Guertler, Suresh Raju
  • Publication number: 20220185833
    Abstract: The invention relates to a process for the carbonylation of epoxides in the presence of catalyst systems, in which the carbonylation is carried out in the presence of carbon monoxide, and wherein the catalyst system comprises a vanadium-based, chromium-based, manganese-based and/or tungsten-based compound, preferably a tungsten-based compound. The invention further relates to carbonylation products and carbonylation conversion products and to the use of catalyst systems according to the invention for carbonylation of epoxides.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 16, 2022
    Inventors: Jens Langanke, Christoph Guertler, Matthias Leven, Daniel Schikowski, Walter Leitner, Suresh Raju
  • Publication number: 20210343374
    Abstract: The present invention relates to a computer-implemented method for calculating transition states of a chemical reaction, and to a system for data processing comprising means for carrying out the method, to a computer program comprising instructions which cause a computer to execute the method and to the use of the computer program.
    Type: Application
    Filed: October 16, 2019
    Publication date: November 4, 2021
    Inventors: Matthias Leven, Jose Gamez, Kunibert Rehm
  • Publication number: 20210319855
    Abstract: The present invention relates to a computer-implemented method for calculating transition states of a chemical reaction, and to a system for data processing comprising means for carrying out the method, to a computer program comprising instructions which cause a computer to execute the method and to the use of the computer program.
    Type: Application
    Filed: October 16, 2019
    Publication date: October 14, 2021
    Inventors: Jose Gamez, Matthias Leven
  • Patent number: 10858310
    Abstract: The invention relates to a method for producing an isocyanate, wherein a carbamate or thiolcarbomate is converted, in the presence of a catalyst, with separation of an alcohol or thioalcohol, at a temperature of at least 150° C., to the corresponding isocyanate, wherein a compound of the general formula (X)(Y)(Z—H) is used as a catalyst, in particular characterized in that the compound has both a proton donor function and a proton acceptor function. In the catalysts according to the invention, a separable proton is bound to a heteroatom, which is more electronegative than carbon. Said heteroatom is either identical to Z or a component thereof. In the catalysts according to the invention, there is additionally a proton acceptor function which is either identical to X or a component thereof. According to the invention, the proton donator and proton acceptor function are connected to each other by the bridge Y.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 8, 2020
    Assignee: Coverstro Deutschland AG
    Inventors: Daniela Cozzula, Andreas Ernst, Matthias Leven, Walter Leitner, Thomas Ernst Mueller, Christoph Guertler, Stefan Wershofen, Gernot Jaeger, Franz Beggel, Jens Langanke
  • Publication number: 20200361856
    Abstract: The invention relates to a method for producing an isocyanate, wherein a carbamate or thiolcarbomate is converted, in the presence of a catalyst, with separation of an alcohol or thioalcohol, at a temperature of at least 150° C., to the corresponding isocyanate, wherein a compound of the general formula (X)(Y)(Z—H) is used as a catalyst, in particular characterized in that the compound has both a proton donor function and a proton acceptor function. In the catalysts according to the invention, a separable proton is bound to a heteroatom, which is more electronegative than carbon. Said heteroatom is either identical to Z or a component thereof. In the catalysts according to the invention, there is additionally a proton acceptor function which is either identical to X or a component thereof. According to the invention, the proton donator and proton acceptor function are connected to each other by the bridge Y.
    Type: Application
    Filed: August 31, 2018
    Publication date: November 19, 2020
    Inventors: Daniela Cozzula, Andreas Ernst, Matthias Leven, Walter Leitner, Thomas Ernst Mueller, Christoph Guertler, Stefan Wershofen, Gernot Jaeger, Franz Beggel, Jens Langanke
  • Publication number: 20200362090
    Abstract: The invention relates to a method for producing a polyurethane polymer, comprising the step of reacting a polyol component with a polyisocyanate component, the polyol component comprising an oxymethylene polyol. The ratio of the polyol component to the polyisocyanate component is selected such that the polyurethane polymer obtained by the reaction has a content of oxymethylene groups from the oxymethylene polyol of ?11 wt. % to ?50 wt. %, preferably ?11 wt. % to ?45 wt. %, and the content of oxymethylene groups from the oxymethylene polyol is defined by means of proton resonance spectroscopy.
    Type: Application
    Filed: August 23, 2017
    Publication date: November 19, 2020
    Inventors: Christoph GÜRTLER, Volker MARKER, Thomas Ernst MÜLLER, Matthias LEVEN, Claudia BIZZARRI, Walter LEITNER
  • Publication number: 20200190261
    Abstract: The invention relates to a method for adding a compound (A) to an H-functional starting compound (BH) in the presence of a catalyst, wherein the at least one compound (A) is selected from at least one group consisting of alkylene oxide (A-1), lactone (A-2), lactide (A-3), cyclic acetal (A-4), lactam (A-5), cyclic anhydride (A-6) and oxygen-containing heterocyclic compound (A-7) different from (A-1), (A-2), (A-3), (A-4) and (A-6), wherein the catalyst comprises an organic, n-protic Brønsted acid (C), wherein n?2 and is an element of the natural numbers and the degree of protolysis D is 0<D<n, with n as the maximum number of transferable protons and D as the calculated proton fraction of the organic, n-protic Brønsted acid (C). The invention further relates to an n-protic Brønsted acid (C) having a degree of protolysis D of 0<D<n, wherein n is the maximum number of transferable protons, with n=2, 3 or 4, and D is the calculated proton fraction of the organic, n-protic Brønsted acid (C).
    Type: Application
    Filed: August 9, 2017
    Publication date: June 18, 2020
    Inventors: Christoph GÜRTLER, Thomas Ernst MÜLLER, Jörg HOFMANN, Jens LANGANKE, Matthias LEVEN, Walter LEITNER