Patents by Inventor Matthias UGELE

Matthias UGELE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12135322
    Abstract: An in-vitro method for determining a cell type of a white blood cell in a biological sample does so without labeling, wherein a microscopy apparatus images the cell, and physical parameters of the cell are ascertained from the image of the cell by an automated image analysis. The cell type of the white blood cell is determined on the basis of the physical parameters and on the basis of principal component analysis parameters (PCA parameters) , wherein the principal component analysis parameters comprise linear combinations of at least some of the physical parameters.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: November 5, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Lukas Richter, Oliver Hayden, Matthias Ugele, Markus Weniger, Oliver Schmidt, Manfred Stanzel
  • Publication number: 20220003653
    Abstract: An automatic analyzer for analyzing a medical probe includes an analysis cell for the probe, a piezo element, and an analysis device. The piezo element can be operated by applying a voltage and a frequency, and in the process an acoustic wave field is generated. A probe located in the analysis cell is located in the acoustic wave field when the piezo element is being operated.
    Type: Application
    Filed: October 15, 2019
    Publication date: January 6, 2022
    Inventors: Lukas Richter, Ann-Kathrin Reichenwallner, Oliver Schmidt, Gabriele Hornig, Manfred Ruhrig (deceased), Karl-Philipp Matheis, Matthias Ugele
  • Publication number: 20210365667
    Abstract: The invention relates to an in-vitro method for determining a cell type of a white blood cell in a biological sample without labeling, wherein a microscopy apparatus images the cell and physical parameters of the cell are ascertained from the image of the cell by means of an automated image analysis, wherein the cell type of the white blood cell is determined on the basis of the physical parameters and on the basis of principal component analysis parameters (PCA parameters), wherein the principal component analysis parameters comprise linear combinations of at least some of the physical parameters.
    Type: Application
    Filed: March 11, 2019
    Publication date: November 25, 2021
    Inventors: Lukas RICHTER, Oliver HAYDEN, Matthias UGELE, Markus WENIGER, Oliver SCHMIDT, Manfred STANZEL
  • Patent number: 11079718
    Abstract: The present invention relates to a method of detecting a possible infection of malaria in a patient using a digital optical microscope.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 3, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Oliver Hayden, Lukas Richter, Matthias Ugele, Gaby Marquardt, Manfred Stanzel
  • Patent number: 10957042
    Abstract: A computer-implemented method for analyzing digital holographic microscopy (DHM) data for hematology applications includes receiving a DHM image acquired using a digital holographic microscopy system. The DHM image comprises depictions of one or more cell objects and background. A reference image is generated based on the DHM image. This reference image may then be used to reconstruct a fringe pattern in the DHM image into an optical depth map.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Saikiran Rapaka, Ali Kamen, Noha El-Zehiry, Bogdan Georgescu, Anton Schick, Uwe Philippi, Oliver Hayden, Lukas Richter, Matthias Ugele
  • Patent number: 10823657
    Abstract: The invention relates to a device for examining particles in a liquid to be examined, comprising a flow passage through which the liquid to be examined is moved. The flow passage has at least one inlet through which at least one sheath fluid flows into the flow passage such that the at least one sheath fluid forms at least one sheath flow in the flow passage. The device further comprises a wave generating device for piezoacoustically generating sound waves which propagate through the flow passage transversely to the flow direction of the liquid to be examined and form wave nodes on a monitoring plane such that particles to be examined of the liquid to be examined are moved onto the monitoring plane and accumulate thereon on the basis of the pressure effect of the sound waves in the transverse direction.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 3, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Oliver Hayden, Lukas Richter, Matthias Ugele
  • Patent number: 10801944
    Abstract: The present invention relates to an improved method for marker-free detection of a cell type of at least one cell in a medium using microfluidics and digital holographic microscopy, as well as a device, particular for carrying out the method.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: October 13, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Noha Youssry El-Zehiry, Oliver Hayden, Ali Kamen, Lukas Richter, Manfred Stanzel, Matthias Ugele, Daniela Seidel, Gaby Marquardt, Oliver Schmidt
  • Publication number: 20200264557
    Abstract: The present invention relates to a method of detecting a possible infection of malaria in a patient using a digital optical microscope
    Type: Application
    Filed: September 25, 2018
    Publication date: August 20, 2020
    Inventors: Oliver Hayden, Lukas Richter, Matthias Ugele, Gaby Marquardt, Manfred Stanzel
  • Patent number: 10656070
    Abstract: A technique is presented for aligning, in a desired region within a flow chamber of a flow cell, a non-spherical biological entity carried in a sample. The flow chamber has a rectangular cross-section. A bottom flow input module, a top flow input module and a sample input module provide a viscoelastic first fluid, a second viscoelastic fluid, and the sample, respectively, to the flow chamber. The first and the second viscoelastic fluids laminarly flow along a bottom and a top wall of the flow chamber and the sample laminarly flows sandwiched between them. By controlling rate of flow of the first and/or the second viscoelastic fluids the sample flow, and thus the non-spherical biological entity, is focused in the desired region. A gradient of sheer within the sample flow set up due to the first and second viscoelastic fluids orients the non-spherical biological entity in the desired region.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 19, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Oliver Hayden, Lukas Richter, Matthias Ugele
  • Publication number: 20190195774
    Abstract: The present invention relates to an improved method for marker-free detection of a cell type of at least one cell in a medium using microfluidics and digital holographic microscopy, as well as a device, particular for carrying out the method.
    Type: Application
    Filed: January 26, 2017
    Publication date: June 27, 2019
    Inventors: Noha Youssry El-Zehiry, Oliver Hayden, Ali Kamen, Lukas Richter, Manfred Stanzel, Matthias Ugele, Daniela Seidel, Gaby Marquardt, Oliver Schmidt
  • Publication number: 20190113433
    Abstract: A technique is presented for aligning, in a desired region within a flow chamber of a flow cell, a non-spherical biological entity carried in a sample. The flow chamber has a rectangular cross-section. A bottom flow input module, a top flow input module and a sample input module provide a viscoelastic first fluid, a second viscoelastic fluid, and the sample, respectively, to the flow chamber. The first and the second viscoelastic fluids laminarly flow along a bottom and a top wall of the flow chamber and the sample laminarly flows sandwiched between them. By controlling rate of flow of the first and/or the second viscoelastic fluids the sample flow, and thus the non-spherical biological entity, is focused in the desired region. A gradient of sheer within the sample flow set up due to the first and second viscoelastic fluids orients the non-spherical biological entity in the desired region.
    Type: Application
    Filed: March 30, 2016
    Publication date: April 18, 2019
    Inventors: Oliver Hayden, Lukas Richter, Matthias Ugele
  • Publication number: 20190011350
    Abstract: The invention relates to a device for examining particles in a liquid to be examined, comprising a flow passage through which the liquid to be examined is moved. The flow passage has at least one inlet through which at least one sheath fluid flows into the flow passage such that the at least one sheath fluid forms at least one sheath flow in the flow passage. The device further comprises a wave generating device for piezoacoustically generating sound waves which propagate through the flow passage transversely to the flow direction of the liquid to be examined and form wave nodes on a monitoring plane such that particles to be examined of the liquid to be examined are moved onto the monitoring plane and accumulate thereon on the basis of the pressure effect of the sound waves in the transversal direction.
    Type: Application
    Filed: December 23, 2015
    Publication date: January 10, 2019
    Inventors: Oliver Hayden, Lukas Richter, Matthias Ugele
  • Publication number: 20180232882
    Abstract: A computer-implemented method for analyzing digital holographic microscopy (DHM) data for hematology applications includes receiving a DHM image acquired using a digital holographic microscopy system. The DHM image comprises depictions of one or more cell objects and background. A reference image is generated based on the DHM image. This reference image may then be used to reconstruct a fringe pattern in the DHM image into an optical depth map.
    Type: Application
    Filed: September 22, 2016
    Publication date: August 16, 2018
    Inventors: Saikiran RAPAKA, Ali KAMEN, Noha EL-ZEHIRY, Bogdan GEORGESCU, Anton SCHICK, Uwe PHILIPPI, Oliver HAYDEN, Lukas RICHTER, Matthias UGELE