Patents by Inventor Matthieu Duperron
Matthieu Duperron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12232807Abstract: A catheter includes proximal and distal sections, a shaft coupled between the proximal and distal sections, and optical fibers extending through the shaft and to the distal section of the catheter. The distal section includes a support structure that includes a proximal end, a distal end, reflective elements, and a cap disposed over a portion of the distal end of the support structure. The proximal end includes alignment receptacles. Each of the optical fibers is inserted into corresponding ones of the alignment receptacles and the alignment receptacles are shaped to maintain the optical fibers straight in the support structure. The distal end includes orifices facing different directions. Each of the optical fibers is optically aligned with corresponding ones of the lenses, reflective elements, and orifices such that the optical fibers in the support structure are straight. The cap includes optical ports aligned with the orifices.Type: GrantFiled: March 4, 2022Date of Patent: February 25, 2025Assignee: Medlumics S.L.Inventors: Sara Mas Gómez, Juan Sancho Dúra, David González Villar, Matthieu Duperron, Carlos Sanz Moreno, Alexandre Romoscanu, Jorge H. Jiménez
-
Publication number: 20240240931Abstract: Described herein are systems and methods for optical coherence tomography with a centimetric range of scan depth and a high tolerance of a precision of lengths among different optical components. A system includes a long coherent light source, an optical interferometer with multiple optical components, an optical detector with a wide bandwidth, a data acquisition unit with high sampling rate, and a data processing unit to process information of interest.Type: ApplicationFiled: December 20, 2023Publication date: July 18, 2024Inventors: Matthieu DUPERRON, Juan SANCHO, Abel ROIGÉ, Sara MAS
-
Publication number: 20240207013Abstract: Described herein are systems and methods for performing optical signal analysis for tissue ablation using a catheter having viewports. A method includes transmitting illumination toward a target tissue via the viewport. The method also includes receiving, at a first viewport, a first scattered illumination from the target tissue and generating a first measurement signal based on the first scattered illumination. The method also includes receiving, at the first viewport, a second scattered illumination from the target tissue after the receiving of the first scattered illumination and generating a second measurement signal based on the second scattered illumination. The method also includes determining whether the viewport is in contact with the target tissue based on a first difference among the plurality of optical measurements meeting or crossing a first threshold value, wherein the first difference comprises a difference between the first and second measurement signals.Type: ApplicationFiled: December 21, 2023Publication date: June 27, 2024Inventors: Juan SANCHO DURÁ, David HERRANZ ARAGONCILLO, Christopher BAILLEUL, James L. GREENE, Matthieu DUPERRON, Abel ROIGÉ
-
Patent number: 12011218Abstract: Described herein are methods, devices, and support structures for assembling optical fibers in catheter tips and facilitating alignment and structural support. A method for assembling a plurality of optical fibers and lenses in a support structure for an ablation catheter includes providing a support structure with a proximal end, a body, and a distal end, the distal end including a plurality of alignment orifices or slits. A plurality of optical fibers are threaded through the alignment orifices or slits, such that each optical fiber is threaded through a corresponding alignment orifice or slit. An adhesive material is applied at each alignment orifice or slit to secure the optical fibers, and the plurality of optical fibers are then cleaved at the distal end to remove portions of the fibers extending out of the distal end. Finally, a lens is attached to each of the ends of the plurality of optical fibers.Type: GrantFiled: May 17, 2022Date of Patent: June 18, 2024Assignee: Medlumics S.L.Inventors: Juan Sancho Durá, Sara Mas Gómez, David Gonzalez, Matthieu Duperron, Carlos Sanz Moreno, Jorge Jimenez, Alexandre Romoscanu
-
Publication number: 20230320592Abstract: Described herein are systems and methods for performing optical signal analysis and lesion predictions in ablations. A system includes a catheter coupled to a plurality of optical fibers via a connector that interfaces with a computing device. The computing device includes a memory and a processor configured to receive optical measurement data of a portion of tissue from the catheter. The processor identifies one or more optical properties of the portion of tissue by analyzing the optical measurement data and determines a time of denaturation of the portion of tissue based on the one or more optical properties. A model is created to represent a correlation between lesion depths and ablation times using the time of denaturation, the one or more optical properties, and the predetermined period of time. A predicted lesion depth for a predetermined ablation time is generated using the model.Type: ApplicationFiled: December 12, 2022Publication date: October 12, 2023Applicant: Medlumics S.L.Inventors: Juan SANCHO DURÁ, Sara MAS GÓMEZ, David GONZALEZ, Matthieu DUPERRON, Carlos SANZ MORENO, Jorge JIMENEZ, Alexandre ROMOSCANU, David HERRANZ ARAGONCILLO
-
Publication number: 20230039891Abstract: Described herein is a system including a catheter, an optical circuit, a pulsed field ablation energy source, and a processing device. The catheter includes a proximal section, a distal section, and a shaft coupled between the proximal section and the distal section. The optical circuit is configured to transport light at least partially from the proximal section to the distal section and back. The pulsed field ablation energy source is coupled to the catheter and configured to transmit pulsed electrical signals to a tissue sample. The processing device is configured to analyze one or more optical signals received from the optical circuit to determine changes in polarization or phase retardation of light reflected or scattered by the tissue sample, and determine changes in a birefringence of the tissue sample based on the changes in polarization or phase retardation.Type: ApplicationFiled: June 14, 2022Publication date: February 9, 2023Applicant: Medlumics S.L.Inventors: Jorge Jimenez, David Herranz, James Greene, Michael Nagy, Tyler Panian, Juan Sancho, Matthieu Duperron
-
Publication number: 20230029805Abstract: Described herein are methods, devices, and support structures for assembling optical fibers in catheter tips and facilitating alignment and structural support. A method for assembling a plurality of optical fibers and lenses in a support structure for an ablation catheter includes providing a support structure with a proximal end, a body, and a distal end, the distal end including a plurality of alignment orifices or slits. A plurality of optical fibers are threaded through the alignment orifices or slits, such that each optical fiber is threaded through a corresponding alignment orifice or slit. An adhesive material is applied at each alignment orifice or slit to secure the optical fibers, and the plurality of optical fibers are then cleaved at the distal end to remove portions of the fibers extending out of the distal end. Finally, a lens is attached to each of the ends of the plurality of optical fibers.Type: ApplicationFiled: May 17, 2022Publication date: February 2, 2023Applicant: Medlumics S.L.Inventors: Juan SANCHO DURÁ, Sara MAS GÒMEZ, David GONZALEZ, Matthieu DUPERRON, Carlos SANZ MORENO, Jorge JIMENEZ, Alexandre ROMOSCANU
-
Patent number: 11523740Abstract: Described herein are systems and methods for performing optical signal analysis and lesion predictions in ablations. A system includes a catheter coupled to a plurality of optical fibers via a connector that interfaces with a computing device. The computing device includes a memory and a processor configured to receive optical measurement data of a portion of tissue from the catheter. The processor identifies one or more optical properties of the portion of tissue by analyzing the optical measurement data and determines a time of denaturation of the portion of tissue based on the one or more optical properties. A model is created to represent a correlation between lesion depths and ablation times using the time of denaturation, the one or more optical properties, and the predetermined period of time. A predicted lesion depth for a predetermined ablation time is generated using the model.Type: GrantFiled: January 13, 2021Date of Patent: December 13, 2022Inventors: Juan Sancho Durá, Sara Mas Gómez, David Gonzalez, Matthieu Duperron, Carlos Sanz Moreno, Jorge Jimenez, Alexandre Romoscanu, David Herranz Aragoncillo
-
Patent number: 11464412Abstract: A medical instrument is described that includes an optical source, an optical fiber, and a waveguide patterned upon a substrate. The optical fiber receives radiation from the optical source and includes a first segment and a second segment. The second segment is rotated about an optical axis relative to the first segment. The waveguide receives radiation from the optical source and guides a beam of radiation. The waveguide includes a first waveguide segment designed to impart a first differential group delay on the beam of radiation and a second waveguide segment designed to impart a second differential group delay on the beam of radiation. A sum of the first differential group delay and the second differential group delay is substantially zero.Type: GrantFiled: October 29, 2020Date of Patent: October 11, 2022Assignee: Medlumics S.L.Inventors: Matthieu Duperron, Juan Sancho Durá, José Luis Rubio Guivernau, Sara María Más Gómez
-
Publication number: 20220280235Abstract: A catheter includes proximal and distal sections, a shaft coupled between the proximal and distal sections, and optical fibers extending through the shaft and to the distal section of the catheter. The distal section includes a support structure that includes a proximal end, a distal end, reflective elements, and a cap disposed over a portion of the distal end of the support structure. The proximal end includes alignment receptacles. Each of the optical fibers is inserted into corresponding ones of the alignment receptacles and the alignment receptacles are shaped to maintain the optical fibers straight in the support structure. The distal end includes orifices facing different directions. Each of the optical fibers is optically aligned with corresponding ones of the lenses, reflective elements, and orifices such that the optical fibers in the support structure are straight. The cap includes optical ports aligned with the orifices.Type: ApplicationFiled: March 4, 2022Publication date: September 8, 2022Inventors: Sara Mas GÓMEZ, Juan Sancho DÚRA, David GONZÁLES, Matthieu DUPERRON, Moreno Carlos SANZ, Alexandre ROMOSCANU, Jorge H. JIMÉNEZ
-
Patent number: 11357569Abstract: Described herein is a system including a catheter, an optical circuit, a pulsed field ablation energy source, and a processing device. The catheter includes a proximal section, a distal section, and a shaft coupled between the proximal section and the distal section. The optical circuit is configured to transport light at least partially from the proximal section to the distal section and back. The pulsed field ablation energy source is coupled to the catheter and configured to transmit pulsed electrical signals to a tissue sample. The processing device is configured to analyze one or more optical signals received from the optical circuit to determine changes in polarization or phase retardation of light reflected or scattered by the tissue sample, and determine changes in a birefringence of the tissue sample based on the changes in polarization or phase retardation.Type: GrantFiled: January 13, 2021Date of Patent: June 14, 2022Assignee: Medlumics S.L.Inventors: Jorge Jimenez, David Herranz, James Greene, Michael Nagy, Tyler Panian, Juan Sancho, Matthieu Duperron
-
Patent number: 11331142Abstract: Described herein are methods, devices, and support structures for assembling optical fibers in catheter tips and facilitating alignment and structural support. A method for assembling a plurality of optical fibers and lenses in a support structure for an ablation catheter includes providing a support structure with a proximal end, a body, and a distal end, wherein the distal end includes a plurality of alignment orifices or slits. A plurality of optical fibers are threaded through the alignment orifices or slits, such that each optical fiber is threaded through a corresponding alignment orifice or slit. An adhesive material is applied at each alignment orifice or slit to secure the optical fibers, and the plurality of optical fibers are then cleaved at the distal end to remove portions of the fibers extending out of the distal end. Finally, a lens is attached to each of the ends of the plurality of optical fibers.Type: GrantFiled: January 13, 2021Date of Patent: May 17, 2022Inventors: Juan Sancho Durá, Sara Mas Gómez, David Gonzalez, Matthieu Duperron, Carlos Sanz Moreno, Jorge Jimenez, Alexandre Romoscanu
-
Publication number: 20210259767Abstract: Described herein are methods, devices, and support structures for assembling optical fibers in catheter tips and facilitating alignment and structural support. A method for assembling a plurality of optical fibers and lenses in a support structure for an ablation catheter includes providing a support structure with a proximal end, a body, and a distal end, wherein the distal end includes a plurality of alignment orifices or slits. A plurality of optical fibers are threaded through the alignment orifices or slits, such that each optical fiber is threaded through a corresponding alignment orifice or slit. An adhesive material is applied at each alignment orifice or slit to secure the optical fibers, and the plurality of optical fibers are then cleaved at the distal end to remove portions of the fibers extending out of the distal end. Finally, a lens is attached to each of the ends of the plurality of optical fibers.Type: ApplicationFiled: January 13, 2021Publication date: August 26, 2021Applicant: Medlumics S.L.Inventors: Juan SANCHO DURÁ, Sara Mas Gómez, David Gonzalez, Matthieu Duperron, Carlos Sanz Moreno, Jorge Jimenez, Alexandre Romoscanu
-
Publication number: 20210212569Abstract: Described herein are systems and methods for performing optical signal analysis and lesion predictions in ablations. A system includes a catheter coupled to a plurality of optical fibers via a connector that interfaces with a computing device. The computing device includes a memory and a processor configured to receive optical measurement data of a portion of tissue from the catheter. The processor identifies one or more optical properties of the portion of tissue by analyzing the optical measurement data and determines a time of denaturation of the portion of tissue based on the one or more optical properties. A model is created to represent a correlation between lesion depths and ablation times using the time of denaturation, the one or more optical properties, and the predetermined period of time. A predicted lesion depth for a predetermined ablation time is generated using the model.Type: ApplicationFiled: January 13, 2021Publication date: July 15, 2021Inventors: Juan SANCHO DURÁ, Sara MAS GÓMEZ, David GONZALEZ, Matthieu DUPERRON, Carlos SANZ MORENO, Jorge JIMENEZ, Alexandre ROMOSCANU
-
Publication number: 20210212755Abstract: Described herein is a system including a catheter, an optical circuit, a pulsed field ablation energy source, and a processing device. The catheter includes a proximal section, a distal section, and a shaft coupled between the proximal section and the distal section. The optical circuit is configured to transport light at least partially from the proximal section to the distal section and back. The pulsed field ablation energy source is coupled to the catheter and configured to transmit pulsed electrical signals to a tissue sample. The processing device is configured to analyze one or more optical signals received from the optical circuit to determine changes in polarization or phase retardation of light reflected or scattered by the tissue sample, and determine changes in a birefringence of the tissue sample based on the changes in polarization or phase retardation.Type: ApplicationFiled: January 13, 2021Publication date: July 15, 2021Inventors: Jorge JIMENEZ, David HERRANZ, James GREENE, Michael NAGY, Tyler PANIAN, Juan SANCHO, Matthieu DUPERRON
-
Publication number: 20210121069Abstract: A medical instrument is described that includes an optical source, an optical fiber, and a waveguide patterned upon a substrate. The optical fiber receives radiation from the optical source and includes a first segment and a second segment. The second segment is rotated about an optical axis relative to the first segment. The waveguide receives radiation from the optical source and guides a beam of radiation. The waveguide includes a first waveguide segment designed to impart a first differential group delay on the beam of radiation and a second waveguide segment designed to impart a second differential group delay on the beam of radiation. A sum of the first differential group delay and the second differential group delay is substantially zero.Type: ApplicationFiled: October 29, 2020Publication date: April 29, 2021Applicant: Medlumics S.L.Inventors: Matthieu DUPERRON, Juan Sancho DURÁ, José Luis RUBIO GUIVERNAU, Sara María Más GÓMEZ
-
Patent number: 10820806Abstract: A medical instrument is described that includes an optical source, an optical fiber, and a waveguide patterned upon a substrate. The optical fiber receives radiation from the optical source and includes a first segment and a second segment. The second segment is rotated about an optical axis relative to the first segment. The waveguide receives radiation from the optical source and guides a beam of radiation. The waveguide includes a first waveguide segment designed to impart a first differential group delay on the beam of radiation and a second waveguide segment designed to impart a second differential group delay on the beam of radiation. A sum of the first differential group delay and the second differential group delay is substantially zero.Type: GrantFiled: December 17, 2018Date of Patent: November 3, 2020Assignee: Medlumics S.L.Inventors: Matthieu Duperron, Juan Sancho Durá, José Luis Rubio Guivernau, Sara María Más Gómez
-
Patent number: 10702161Abstract: A medical instrument is described that includes an optical source, an optical fiber, and a waveguide patterned upon a substrate. The optical fiber receives radiation from the optical source and includes a first segment and a second segment. The second segment is rotated about an optical axis relative to the first segment. The waveguide receives radiation from the optical source and guides a beam of radiation. The waveguide includes a first waveguide segment designed to impart a first differential group delay on the beam of radiation and a second waveguide segment designed to impart a second differential group delay on the beam of radiation. A sum of the first differential group delay and the second differential group delay is substantially zero.Type: GrantFiled: December 17, 2018Date of Patent: July 7, 2020Assignee: Medlumics S.L.Inventors: Matthieu Duperron, Juan Sancho Durá, José Luis Rubio Guivernau, Sara María Más Gómez
-
Publication number: 20190192005Abstract: A medical instrument is described that includes an optical source, an optical fiber, and a waveguide patterned upon a substrate. The optical fiber receives radiation from the optical source and includes a first segment and a second segment. The second segment is rotated about an optical axis relative to the first segment. The waveguide receives radiation from the optical source and guides a beam of radiation. The waveguide includes a first waveguide segment designed to impart a first differential group delay on the beam of radiation and a second waveguide segment designed to impart a second differential group delay on the beam of radiation. A sum of the first differential group delay and the second differential group delay is substantially zero.Type: ApplicationFiled: December 17, 2018Publication date: June 27, 2019Applicant: Medlumics S.L.Inventors: Matthieu DUPERRON, Juan Sancho DURÁ, José Luis RUBIO GUIVERNAU, Sara María Más GÓMEZ
-
Publication number: 20150340395Abstract: A photodetector element for infrared light radiation of a given wavelength, in a medium that is at least partially transparent to the infrared light radiation to be detected. The photodetector includes a layer of a partially absorbent semiconductor and a periodic structure placed at a distance from and in the near field of the semiconductor layer and exciting propagation modes parallel to the semiconductor layer, of the infrared light radiation to be detected. There is a perimetric electrical contact that frames the outline of the photodetector element and extends perpendicularly relative to the planes defined by the semiconductor layer and the periodic structure, which makes contact with said semiconductor layer, and that also forms an optical mirror for the modes excited by the periodic structure.Type: ApplicationFiled: June 19, 2013Publication date: November 26, 2015Inventors: Matthieu Duperron, Roch Espiau de Lamaestre, Olivier Gravrand