Patents by Inventor Matthieu Guilbert

Matthieu Guilbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10592552
    Abstract: Methods, apparatus, systems, and computer-readable media for assigning a real-time clock domain timestamp to sensor frames from a sensor component that operates in a non-real-time time-domain. In some implementations, a real-time component receives capture instances that each indicate capturing of a corresponding sensor data frame by the sensor component. In response to a capture output instance, the real-time component or an additional real-time component assigns a real-time timestamp to the capture output instance, where the real-time timestamp is based on the real-time clock domain. Separately, a non-real-time component receives the corresponding sensor data frames captured by the sensor component, along with corresponding metadata. For each sensor data frame, it is determined whether there is a real-time timestamp that corresponds to the data frame and, if so, the real-time timestamp is assigned to the sensor data frame.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: March 17, 2020
    Assignee: X DEVELOPMENT LLC
    Inventors: Emily Cooper, David Deephanphongs, Yuanzheng Gong, Thomas Buschmann, Matthieu Guilbert
  • Patent number: 10564031
    Abstract: An example method includes determining a plurality of frequency ranges corresponding to a plurality of types of errors, where the plurality of frequency ranges are associated with sounds occurring during operation of a robotic device. The method also includes detecting, based on sensor data from at least one audio sensor of the robotic device, a sound during a given operation of the robotic device. The method also includes determining that a frequency of the detected sound is within a particular frequency range of the plurality of frequency ranges. Based on the frequency being within the particular frequency range, the method also includes determining a type of error of the plurality of types of errors corresponding to the particular frequency range. The method also includes providing an output signal indicating an error of the determined type.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: February 18, 2020
    Assignee: X Development LLC
    Inventors: Laura Stoia, Craig Latimer, Matthieu Guilbert
  • Patent number: 10493628
    Abstract: An example method includes determining an expected sound profile corresponding to a given task for a robotic device. The method further includes detecting a sound profile during execution of the given task by the robotic device. The method also includes determining one or more differences in amplitude for at least one frequency range between the detected sound profile and the expected sound profile corresponding to the given task for the robotic device. In response to determining the one or more differences in amplitude for the at least one frequency range between the detected sound profile and the expected sound profile, the method additionally includes identifying at least one component of the robotic device associated with the detected sound profile during execution of the given task. The method further includes adjusting control data for the at least one component of the robotic device.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: December 3, 2019
    Assignee: X Development LLC
    Inventors: Laura Stoia, Craig Latimer, Matthieu Guilbert
  • Patent number: 10296602
    Abstract: Methods, apparatus, systems, and computer-readable media for assigning a real-time clock domain timestamp to sensor frames from a sensor component that operates in a non-real-time time-domain. In some implementations, a real-time component receives capture instances that each indicate capturing of a corresponding sensor data frame by the sensor component. In response to a capture output instance, the real-time component or an additional real-time component assigns a real-time timestamp to the capture output instance, where the real-time timestamp is based on the real-time clock domain. Separately, a non-real-time component receives the corresponding sensor data frames captured by the sensor component, along with corresponding metadata. For each sensor data frame, it is determined whether there is a real-time timestamp that corresponds to the data frame and, if so, the real-time timestamp is assigned to the sensor data frame.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: May 21, 2019
    Assignee: X DEVELOPMENT LLC
    Inventors: Emily Cooper, Matthieu Guilbert, Thomas Buschmann, David Deephanphongs, Yuanzheng Gong
  • Patent number: 9919427
    Abstract: An example method includes receiving, from a sensor, an image of an environment, where the environment includes a robotic device. The method also includes determining, based on the received image of the environment, a pose of the robotic device relative to the sensor. The method further includes determining, based on the pose of the robotic device relative to the sensor, respective positions of a plurality of trajectory points for the robotic device relative to the sensor. The method additionally includes providing for display of the image of the environment and an overlaid plurality of virtual trajectory points corresponding to the plurality of trajectory points, where the plurality of virtual trajectory points are positioned in the image based on the determined respective positions of the plurality of trajectory points for the robotic device relative to the sensor.
    Type: Grant
    Filed: July 25, 2015
    Date of Patent: March 20, 2018
    Assignee: X Development LLC
    Inventor: Matthieu Guilbert
  • Publication number: 20180029236
    Abstract: An example method includes determining an expected sound profile corresponding to a given task for a robotic device. The method further includes detecting a sound profile during execution of the given task by the robotic device. The method also includes determining one or more differences in amplitude for at least one frequency range between the detected sound profile and the expected sound profile corresponding to the given task for the robotic device. In response to determining the one or more differences in amplitude for the at least one frequency range between the detected sound profile and the expected sound profile, the method additionally includes identifying at least one component of the robotic device associated with the detected sound profile during execution of the given task. The method further includes adjusting control data for the at least one component of the robotic device.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 1, 2018
    Inventors: Laura Stoia, Craig Latimer, Matthieu Guilbert
  • Patent number: 9815203
    Abstract: An example method includes determining an expected sound profile corresponding to a given task for a robotic device. The method further includes detecting a sound profile during execution of the given task by the robotic device. The method also includes determining one or more differences in amplitude for at least one frequency range between the detected sound profile and the expected sound profile corresponding to the given task for the robotic device. In response to determining the one or more differences in amplitude for the at least one frequency range between the detected sound profile and the expected sound profile, the method additionally includes identifying at least one component of the robotic device associated with the detected sound profile during execution of the given task. The method further includes adjusting control data for the at least one component of the robotic device.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: November 14, 2017
    Assignee: X Development LLC
    Inventors: Laura Stoia, Craig Latimer, Matthieu Guilbert
  • Publication number: 20170258871
    Abstract: The invention relates to an EphA2 inhibitor for the use thereof in the treatment of solid cancer treated with a TrkA inhibitor, and a TrkA inhibitor for the use thereof in the treatment of solid cancer treated with an EpbA2 inhibitor. The invention also relates to a method for the prognosis of survival of a patient who has a solid cancer, comprising a step of detecting the expression of TrkA and EphA2 in a biological sample of the patient, the co-expression of TrkA and EphA2 being associated with a poor prognosis of survival of the patient.
    Type: Application
    Filed: September 7, 2015
    Publication date: September 14, 2017
    Applicants: UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE, INSERM (INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE)
    Inventors: Robert Toillon, Xuefen Le Bourhis, Cyril Corbet, Leo Aubert, Matthieu Guilbert
  • Patent number: 8078320
    Abstract: A method of adjusting operating parameters of a robot to move an effector tool along a given path in an optimum cycle time including a step of modifying operating parameter values to cause the cycle time to approach a optimal value wherein the parameters are modified so as to approach an extremum of a compromise function including at least first and second terms, the first term being a function of a cycle time and the second term being a function of at least one of temperature and degree of wear of an actuator.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: December 13, 2011
    Assignee: Staubli Faverges
    Inventors: Lüc Joly, Matthieu Guilbert, Pierre-Brice Wieber
  • Publication number: 20070252839
    Abstract: This method of adjusting the operating parameters of a robot to move an effector tool along a given path in an optimum cycle time comprises a step (140) of modifying the operating parameter values to cause the cycle time to approach its optimum value. During this step, the values of the operating parameters are modified so as to approach an extremum of a compromise function, the compromise function comprising at least first and second terms, the first term being a function of the cycle time and the second term being a function of the temperature and/or the degree of wear.
    Type: Application
    Filed: April 27, 2007
    Publication date: November 1, 2007
    Inventors: Luc Joly, Matthieu Guilbert, Pierre-Brice Wieber