Patents by Inventor Mattia Pascolini
Mattia Pascolini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230333376Abstract: A head-mounted device may have a head-mounted housing. The head-mounted housing may have rear-facing displays that display images for a user. The images are viewable from eye boxes while the head-mounted device is being worn by the user. A peripheral conductive member may run along a peripheral edge of the front face of the housing. Dielectric-filled gaps may divide the peripheral conductive member into elongated conductive segments. The conductive segments may form antenna resonating elements for antennas on the front face. Radio-frequency transceiver circuitry such as cellular telephone transceiver circuitry may be coupled to the antennas.Type: ApplicationFiled: February 8, 2023Publication date: October 19, 2023Inventors: Lijun Zhang, Jiangfeng Wu, Lu Zhang, Mattia Pascolini, Siwen Yong, Yi Jiang
-
Publication number: 20230327339Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.Type: ApplicationFiled: June 15, 2023Publication date: October 12, 2023Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Mattia Pascolini
-
Publication number: 20230314592Abstract: A head-mounted device may have a head-mounted housing. A radar sensor may be mounted in the housing. The head-mounted housing may have rear-facing displays that display images for a user. The images are viewable from eye boxes while the head-mounted device is being worn by the user. A forward-facing camera may capture real-world image content. The rear-facing displays may be used to display captured real-world image content merged with computer-generated image content. The forward-facing camera and the radar sensor may be mounted under inactive display borders of a forward-facing display. The radar sensor may have a horizontal array of patch antenna elements configured to form a phased antenna array. Communications circuitry in the head-mounted device may use the phased antenna array to transmit and receive wireless communications signals.Type: ApplicationFiled: February 22, 2023Publication date: October 5, 2023Inventors: Lijun Zhang, Jiangfeng Wu, Mattia Pascolini, Siwen Yong, Yi Jiang
-
Publication number: 20230305302Abstract: A head-mounted device such as a pair of glasses may have display systems. The display systems may present images to eye boxes for viewing by a user. The glasses may have clear lenses through which real-world objects may be viewed from the eye boxes. The glasses may have a metal frame that surrounds the lenses and may have temples that are coupled to the frame using hinges. Radio-frequency transceiver circuitry such as cellular telephone transceiver circuitry may be coupled to one or more antennas in the head-mounted device. The antennas may have antenna resonating elements formed by placing dielectric-filled gaps in the metal frame to divide the frame into segments. Antenna resonating elements formed from segments of the metal frame may be coupled to the radio-frequency transceiver circuitry using transmission lines.Type: ApplicationFiled: February 17, 2023Publication date: September 28, 2023Inventors: Lijun Zhang, Jiangfeng Wu, Lu Zhang, Mattia Pascolini, Siwen Yong, Yi Jiang
-
Publication number: 20230305321Abstract: A head-mounted device may have a head-mounted housing. The head-mounted housing may have displays that display images for a user through lenses. The displays and lenses may be mounted in left and right optical modules. Attachment structures such as magnets may be used to removably attach left and right vision correction lenses to the left and right optical modules, respectively. The images may be viewed from eye boxes through the vision correction lenses while the head-mounted device is being worn by the user. The vision correction lenses and the head-mounted device may be provided with near-field communications antennas. The antennas may be formed from coils that surround corrective lens elements in the vision correction lenses. In the head-mounted device, antennas may be formed from coils surrounding the lenses in the optical modules and/or may include other coil(s).Type: ApplicationFiled: February 22, 2023Publication date: September 28, 2023Inventors: Lijun Zhang, Jiangfeng Wu, Mattia Pascolini, Siwen Yong, Yi Jiang
-
Patent number: 11762075Abstract: An electronic device such as a wristwatch may be provided with a phased antenna array for conveying first signals at a first frequency between 10 GHz and 300 GHz and a non-millimeter wave antenna for conveying second signals at a second frequency below 10 GHz. The device may include conductive housing sidewalls and a display. Conductive structures in the display and the conductive housing sidewalls may define a slot element in the non-millimeter wave antenna. The phased antenna array may be mounted within the slot element, aligned with a spatial filter in the display, or aligned with a dielectric window in the conductive housing sidewalls. Control circuitry may process signals transmitted by the phased antenna array and a reflected version of the transmitted signals that has been received by the phased antenna array to detect a range between the device and an external object.Type: GrantFiled: October 19, 2020Date of Patent: September 19, 2023Assignee: Apple Inc.Inventors: Jayesh Nath, Simone Paulotto, Mario Martinis, Eduardo Jorge Da Costa Bras Lima, Andrea Ruaro, Carlo Di Nallo, Matthew A. Mow, Mattia Pascolini
-
Publication number: 20230291125Abstract: An electronic device may include first and second antennas formed from respective first and second segments of a housing. The first antenna may have a first feed coupled to the first segment by a first switch and coupled to the first segment by a first conductive trace. The second antenna may have a second feed coupled to the second segment by a second switch and coupled to the second segment by a second conductive trace. The first segment may be separated from the second segment by a single gap, a data connector may pass through the second segment, and the antennas may selectively cover a low band. Alternatively, the first segment may be separated from the second segment by a third segment and two gaps, the data connector may pass through the third segment, and the first and second antennas may concurrently cover the low band.Type: ApplicationFiled: June 3, 2022Publication date: September 14, 2023Inventors: Enrique Ayala Vazquez, Xu Han, Hongfei Hu, Ming Chen, Jingni Zhong, Erdinc Irci, Salih Yarga, Mohsen Salehi, Carlo Di Nallo, Ming-Ju Tsai, Mattia Pascolini
-
Publication number: 20230291124Abstract: An electronic device may include first and second antennas formed from respective first and second segments of a housing. The first antenna may have a first feed coupled to the first segment by a first switch and coupled to the first segment by a first conductive trace. The second antenna may have a second feed coupled to the second segment by a second switch and coupled to the second segment by a second conductive trace. The first segment may be separated from the second segment by a single gap, a data connector may pass through the second segment, and the antennas may selectively cover a low band. Alternatively, the first segment may be separated from the second segment by a third segment and two gaps, the data connector may pass through the third segment, and the first and second antennas may concurrently cover the low band.Type: ApplicationFiled: March 14, 2022Publication date: September 14, 2023Inventors: Enrique Ayala Vazquez, Xu Han, Hongfei Hu, Ming Chen, Jingni Zhong, Erdinc Irci, Salih Yarga, Mohsen Salehi, Carlo Di Nallo, Ming-Ju Tsai, Mattia Pascolini
-
Patent number: 11735821Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.Type: GrantFiled: December 4, 2020Date of Patent: August 22, 2023Assignee: Apple Inc.Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Mattia Pascolini
-
Publication number: 20230261695Abstract: An electronic device may be provided with an antenna module having a substrate. A phased antenna array of dielectric resonator antennas and a radio-frequency integrated circuit for the array may be mounted to one or more surfaces of the substrate. The dielectric resonator antennas may include dielectric columns excited by feed probes. The feed probes may be printed onto sidewalls of the dielectric columns or may be pressed against the sidewalls by biasing structures. A plastic substrate may be molded over each dielectric column and each of the feed probes in the array. The feed probes may cover multiple polarizations. The array may include elements for covering multiple frequency bands. The dielectric columns may be aligned a longitudinal axis and may be rotated at a non-zero and non-perpendicular angle with respect to the longitudinal axis.Type: ApplicationFiled: April 24, 2023Publication date: August 17, 2023Inventors: Harish Rajagopalan, Bilgehan Avser, David Garrido Lopez, Forhad Hasnat, Mattia Pascolini, Mikal Askarian Amiri, Rodney A. Gomez Angulo, Thomas W. Yang, Jiechen Wu, Eric N. Nyland, Simone Paulotto, Jennifer M. Edwards, Matthew D. Hill, Ihtesham H. Chowdhury, David A. Hurrell, Siwen Yong, Jiangfeng Wu, Daniel C. Wagman, Soroush Akbarzadeh, Robert Scritzky, Subramanian Ramalingam
-
Patent number: 11728569Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a dielectric resonator antenna. The dielectric resonator antenna may include a dielectric resonating element embedded in a lower permittivity dielectric substrate. The substrate and the resonating element may be mounted to a flexible printed circuit. A slot may be formed in ground traces on the flexible printed circuit and aligned with the resonating element. The slot may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the cover layer. A dielectric matching layer may be interposed between the resonating element and the cover layer. If desired, the slot may radiate additional radio-frequency signals and the matching layer may have a tapered shape. Dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the array.Type: GrantFiled: December 3, 2020Date of Patent: August 15, 2023Assignee: Apple Inc.Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Hao Xu, Rodney A. Gomez Angulo, Matthew D. Hill, Mattia Pascolini
-
Patent number: 11700035Abstract: An electronic device may be provided with an antenna module having a substrate. A phased antenna array of dielectric resonator antennas and a radio-frequency integrated circuit for the array may be mounted to one or more surfaces of the substrate. The dielectric resonator antennas may include dielectric columns excited by feed probes. The feed probes may be printed onto sidewalls of the dielectric columns or may be pressed against the sidewalls by biasing structures. A plastic substrate may be molded over each dielectric column and each of the feed probes in the array. The feed probes may cover multiple polarizations. The array may include elements for covering multiple frequency bands. The dielectric columns may be aligned a longitudinal axis and may be rotated at a non-zero and non-perpendicular angle with respect to the longitudinal axis.Type: GrantFiled: July 2, 2020Date of Patent: July 11, 2023Assignee: Apple Inc.Inventors: Harish Rajagopalan, Bilgehan Avser, David Garrido Lopez, Forhad Hasnat, Mattia Pascolini, Mikal Askarian Amiri, Rodney A. Gomez Angulo, Thomas W. Yang, Jiechen Wu, Eric N. Nyland, Simone Paulotto, Jennifer M. Edwards, Matthew D. Hill, Ihtesham H. Chowdhury, David A. Hurrell, Siwen Yong, Jiangfeng Wu, Daniel C. Wagman, Soroush Akbarzadeh, Robert Scritzky, Subramanian Ramalingam
-
Patent number: 11682828Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.Type: GrantFiled: April 25, 2022Date of Patent: June 20, 2023Assignee: Apple Inc.Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
-
Patent number: 11677160Abstract: An electronic device may be provided with a cover layer and a phased antenna array mounted against the cover layer. Each antenna in the array may include a first patch element that is directly fed using first and second feeds and a second patch element that is directly fed using third and fourth feeds. A slot element may be formed in the first patch element. The first patch element may radiate in a first frequency band through the cover layer. The slot element may radiate in a second frequency band that is higher than the first frequency band through the cover layer. The second patch element may indirectly feed the slot element. Locating the radiating elements for each frequency band in the same plane may allow the antenna to radiate through the cover layer in both frequency bands with satisfactory antenna efficiency.Type: GrantFiled: March 25, 2021Date of Patent: June 13, 2023Assignee: Apple Inc.Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Hao Xu, Rodney A. Gomez Angulo, Matthew A. Mow, Mattia Pascolini
-
Publication number: 20230176625Abstract: This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.Type: ApplicationFiled: February 6, 2023Publication date: June 8, 2023Inventors: Scott A. Myers, Mattia Pascolini, Richard Hung Minh Dinh, Trent Weber, Robert Schlub, Josh Nickel, Robert Hill, Nanbo Jin, Tang Yew Tan
-
Publication number: 20230170927Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.Type: ApplicationFiled: January 23, 2023Publication date: June 1, 2023Inventors: Liang Han, Enrique Ayala Vazquez, Thomas E. Biedka, Hongfei Hu, Erdinc Irci, Nanbo Jin, James G. Judkins, Victor C. Lee, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Yiren Wang, Yuancheng Xu, Yijun Zhou
-
Patent number: 11588223Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.Type: GrantFiled: September 16, 2019Date of Patent: February 21, 2023Assignee: Apple Inc.Inventors: Matthew A. Mow, Basim H. Noori, Ming-Ju Tsai, Xu Han, Victor C. Lee, Mattia Pascolini
-
Patent number: 11573608Abstract: This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.Type: GrantFiled: April 21, 2020Date of Patent: February 7, 2023Assignee: APPLE INC.Inventors: Scott A. Myers, Mattia Pascolini, Richard Hung Minh Dinh, Trent Weber, Robert Schlub, Josh Nickel, Robert Hill, Nanbo Jin, Tang Yew Tan
-
Patent number: 11569858Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.Type: GrantFiled: June 10, 2020Date of Patent: January 31, 2023Assignee: Apple Inc.Inventors: Liang Han, Enrique Ayala Vazquez, Thomas E. Biedka, Hongfei Hu, Erdinc Irci, Nanbo Jin, James G. Judkins, Victor C. Lee, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Yiren Wang, Yuancheng Xu, Yijun Zhou
-
Patent number: 11552402Abstract: An electronic device may be provided with a sidewall and an antenna module pressed against an interior surface of the sidewall. The module may include a phased antenna array. The sidewall may have apertures aligned with respective antenna in the array. The antennas may convey radio-frequency signals in first and second frequency bands greater than 10 GHz and with vertical and horizontal polarizations. Each aperture may include a corresponding cavity with non-linear cavity walls. The antennas may excite resonant cavity modes of the cavities that cause the cavities to radiate the radio-frequency signals as waveguide radiators. At the same time, the apertures may form a smooth impedance transition between the antennas and free space for the radio-frequency signals of both the horizontal and vertical polarizations.Type: GrantFiled: November 13, 2020Date of Patent: January 10, 2023Assignee: Apple Inc.Inventors: Jennifer M. Edwards, Bhaskara R. Rupakula, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini