Patents by Inventor Mattia Pascolini

Mattia Pascolini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11573608
    Abstract: This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: February 7, 2023
    Assignee: APPLE INC.
    Inventors: Scott A. Myers, Mattia Pascolini, Richard Hung Minh Dinh, Trent Weber, Robert Schlub, Josh Nickel, Robert Hill, Nanbo Jin, Tang Yew Tan
  • Patent number: 11569858
    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 31, 2023
    Assignee: Apple Inc.
    Inventors: Liang Han, Enrique Ayala Vazquez, Thomas E. Biedka, Hongfei Hu, Erdinc Irci, Nanbo Jin, James G. Judkins, Victor C. Lee, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Yiren Wang, Yuancheng Xu, Yijun Zhou
  • Patent number: 11552402
    Abstract: An electronic device may be provided with a sidewall and an antenna module pressed against an interior surface of the sidewall. The module may include a phased antenna array. The sidewall may have apertures aligned with respective antenna in the array. The antennas may convey radio-frequency signals in first and second frequency bands greater than 10 GHz and with vertical and horizontal polarizations. Each aperture may include a corresponding cavity with non-linear cavity walls. The antennas may excite resonant cavity modes of the cavities that cause the cavities to radiate the radio-frequency signals as waveguide radiators. At the same time, the apertures may form a smooth impedance transition between the antennas and free space for the radio-frequency signals of both the horizontal and vertical polarizations.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: January 10, 2023
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Bhaskara R. Rupakula, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Publication number: 20220384941
    Abstract: An electronic device may have a cover layer and an antenna. A dielectric adapter may have a first surface coupled to the antenna and a second surface pressed against the cover layer. The cover layer may have a three-dimensional curvature. The second surface may have a curvature that matches the curvature of the cover layer. Biasing structures may exert a biasing force that presses the antenna against the dielectric adapter and that presses the dielectric adapter against the cover layer. The biasing force may be oriented in a direction normal to the cover layer at each point across dielectric adapter. This may serve to ensure that a uniform and reliable impedance transition is provided between the antenna and free space through the cover layer over time, thereby maximizing the efficiency of the antenna.
    Type: Application
    Filed: July 14, 2022
    Publication date: December 1, 2022
    Inventors: Yi Jiang, Jiangfeng Wu, Lijun Zhang, Siwen Yong, Mattia Pascolini, Samuel A. Resnick, Anthony S. Montevirgen
  • Patent number: 11502391
    Abstract: An electronic device may have an antenna that conveys radio-frequency signals at frequencies greater than 10 GHz. The antenna may be embedded in a substrate. The substrate may have routing layers, first antenna layers on the routing layers, second antenna layers on the first antenna layers, and a third antenna layers on the second antenna layers. The antenna may include first traces on the first antenna layers, second traces on the second antenna layers, and third traces on the third antenna layers. The first antenna layers may have a first bulk dielectric permittivity. The second layers may have a second bulk dielectric permittivity. The third layers may have a third bulk dielectric permittivity. At least one of the first, second, and third bulk dielectric permittivities may be different from the others. This may differentially load the antenna across the antenna layers, thereby broadening the bandwidth of the antenna.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: November 15, 2022
    Assignee: Apple Inc.
    Inventors: Siwen Yong, Jiangfeng Wu, Yi Jiang, Simon G. Begashaw, Harish Rajagopalan, Hee-Joung Joun, Thomas W. Yang, Mattia Pascolini
  • Patent number: 11469526
    Abstract: An electronic device may include first and second phased antenna arrays that convey radio-frequency signals at frequencies greater than 10 GHz. The second array may have fewer antennas than the first array. Control circuitry may control the first and second arrays in a diversity mode and in a simultaneous array mode. In the diversity mode, the first array may form a first signal beam while the second array is inactive. When the first array is blocked by an object or otherwise exhibits unsatisfactory performance, the second array may form a second signal beam while the first array is inactive. In the simultaneous mode, the first and second arrays may form a combined array that produces a third signal beam. The combined array may maximize gain. Hierarchical beam searching operations may be performed. The arrays may be distributed across one or more modules.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: October 11, 2022
    Assignee: Apple Inc.
    Inventors: Kexin Ma, Siwen Yong, Jiangfeng Wu, Simon G. Begashaw, Madhusudan Chaudhary, Lijun Zhang, Yi Jiang, Hao Xu, Mattia Pascolini
  • Patent number: 11456768
    Abstract: An electronic device may include control circuitry, sensors, and wireless circuitry having antennas. The sensors may generate sensor data that is used by the control circuitry to identify an operating environment for the device. The sensor data may include a grip map generated by a touch-sensitive display, infrared facial recognition image signals or other image signals, an angle of arrival of sound received by a set of microphones, impedance data from an impedance sensor, and any other desired sensor data. The control circuitry may use the sensor data, radio-frequency spatial ranging data, information about whether audio is being played over an ear speaker, and/or information about communications protocols in use to identify the operating environment. The control circuitry may adjust antenna settings for the wireless circuitry based on the identified operating environment to ensure that the antennas operate with satisfactory antenna efficiency regardless of operating conditions.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: September 27, 2022
    Assignee: Apple Inc.
    Inventors: Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yuancheng Xu, Iyappan Ramachandran
  • Publication number: 20220285834
    Abstract: An electronic device may have a phased antenna array. An antenna in the array may include a rectangular patch element with diagonal axes. The antenna may have first and second antenna feeds coupled to the patch element along the diagonal axes. The antenna may be rotated at a forty-five degree angle relative to other antennas in the array. The antenna may have one or two layers of parasitic elements overlapping the patch element. For example, the antenna may have a layer of coplanar parasitic patches separated by a gap. The antenna may also have an additional parasitic patch that is located farther from the patch element than the layer of coplanar parasitic patches. The additional parasitic patch may overlap the patch element and the gap in the coplanar parasitic patches. The antenna may exhibit a relatively small footprint and minimal mutual coupling with other antennas in the array.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Jiangfeng Wu, Lijun Zhang, Mattia Pascolini, Siwen Yong, Yi Jiang
  • Publication number: 20220278702
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays each of which includes multiple antenna elements. Phased antenna arrays may be mounted along edges of a housing for the electronic device, behind a dielectric window such as a dielectric logo window in the housing, in alignment with dielectric housing portions at corners of the housing, or elsewhere in the electronic device. A phased antenna array may include arrays of patch antenna elements on dielectric layers separated by a ground layer. A baseband processor may distribute wireless signals to the phased antenna arrays at intermediate frequencies over intermediate frequency signal paths. Transceiver circuits at the phased antenna arrays may include upconverters and downconverters coupled to the intermediate frequency signal paths.
    Type: Application
    Filed: May 13, 2022
    Publication date: September 1, 2022
    Inventors: Yuehui Ouyang, Yi Jiang, Matthew A. Mow, Basim Noori, Mattia Pascolini, Ruben Caballero
  • Patent number: 11417951
    Abstract: An electronic device may have a cover layer and an antenna. A dielectric adapter may have a first surface coupled to the antenna and a second surface pressed against the cover layer. The cover layer may have a three-dimensional curvature. The second surface may have a curvature that matches the curvature of the cover layer. Biasing structures may exert a biasing force that presses the antenna against the dielectric adapter and that presses the dielectric adapter against the cover layer. The biasing force may be oriented in a direction normal to the cover layer at each point across dielectric adapter. This may serve to ensure that a uniform and reliable impedance transition is provided between the antenna and free space through the cover layer over time, thereby maximizing the efficiency of the antenna.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Yi Jiang, Jiangfeng Wu, Lijun Zhang, Siwen Yong, Mattia Pascolini, Samuel A. Resnick, Anthony S. Montevirgen
  • Publication number: 20220255212
    Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 11, 2022
    Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Patent number: 11356131
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays each of which includes multiple antenna elements. Phased antenna arrays may be mounted along edges of a housing for the electronic device, behind a dielectric window such as a dielectric logo window in the housing, in alignment with dielectric housing portions at corners of the housing, or elsewhere in the electronic device. A phased antenna array may include arrays of patch antenna elements on dielectric layers separated by a ground layer. A baseband processor may distribute wireless signals to the phased antenna arrays at intermediate frequencies over intermediate frequency signal paths. Transceiver circuits at the phased antenna arrays may include upconverters and downconverters coupled to the intermediate frequency signal paths.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: June 7, 2022
    Assignee: Apple Inc.
    Inventors: Yuehui Ouyang, Yi Jiang, Matthew A. Mow, Basim Noori, Mattia Pascolini, Ruben Caballero
  • Patent number: 11349204
    Abstract: An electronic device may have a phased antenna array. An antenna in the array may include a rectangular patch element with diagonal axes. The antenna may have first and second antenna feeds coupled to the patch element along the diagonal axes. The antenna may be rotated at a forty-five degree angle relative to other antennas in the array. The antenna may have one or two layers of parasitic elements overlapping the patch element. For example, the antenna may have a layer of coplanar parasitic patches separated by a gap. The antenna may also have an additional parasitic patch that is located farther from the patch element than the layer of coplanar parasitic patches. The additional parasitic patch may overlap the patch element and the gap in the coplanar parasitic patches. The antenna may exhibit a relatively small footprint and minimal mutual coupling with other antennas in the array.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 31, 2022
    Assignee: Apple Inc.
    Inventors: Jiangfeng Wu, Lijun Zhang, Mattia Pascolini, Siwen Yong, Yi Jiang
  • Publication number: 20220158692
    Abstract: A wireless communication system comprises a base station and one or more relay docks and transmits directional wave signals between components using high frequency waves, such as millimeter waves. A beam forming decision engine utilizes position information collected from one or more position or motion sensors of a user device to determine a direction in which to form a directional wave signal being transmitted between components of the wireless communication system.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: Apple Inc.
    Inventors: Yi Jiang, Mattia Pascolini, Jiangfeng Wu, Siwen Yong, Lijun Zhang
  • Patent number: 11335992
    Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: May 17, 2022
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Patent number: 11322840
    Abstract: An electronic device may be provided with wireless circuitry and a housing with upper and lower ends. The lower end may include first and second open slot antennas that are directly fed by respective feeds and that radiate in a cellular ultra-high band. The lower end may also include first and second inverted-F antennas. The upper end may include third and fourth inverted-F antennas. The first inverted-F antenna may have a first feed that conveys currents below 2700 MHz and a second feed that conveys antenna currents in the cellular ultra-high band, a wireless local area network band, and/or ultra-wideband frequency bands. If desired, the upper end may include a third open slot antenna that is directly fed by a corresponding antenna feed and that radiates in the cellular ultra-high band and/or in the ultra-wideband frequency bands.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: May 3, 2022
    Assignee: Apple Inc.
    Inventors: Yiren Wang, Daisong Zhang, Erdinc Irci, Han Wang, Hongfei Hu, Jingni Zhong, Liang Han, Mattia Pascolini, Ming Chen, Nanbo Jin, Tiejun Yu, Yijun Zhou, Yuan Tao, Yuancheng Xu
  • Patent number: 11309628
    Abstract: An electronic device may include a housing and four antennas at respective corners of the housing. Cellular telephone transceiver circuitry may concurrently convey signals at one or more of the same frequencies over one or more of the four antennas using a multiple-input multiple-output (MIMO) scheme. In order to isolate adjacent antennas, dielectric-filled openings may be formed in conductive walls of the housing to divide the walls into segments that are used to form resonating element arms for the antennas. If desired, first and second antennas may include resonating element arms formed from a wall without any gaps. The first and second antennas may include adjacent return paths. A magnetic field associated with currents for the first antenna may cancel out with a magnetic field associated with currents for the second antenna at the adjacent return paths, thereby serving to electromagnetically isolate the first and second antennas.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: April 19, 2022
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Nanbo Jin, Matthew A. Mow, Erdinc Irci, Erica J. Tong, Han Wang
  • Patent number: 11303022
    Abstract: An electronic device may be provided with a housing and an antenna having a resonating element. The resonating element may have first and second arms extending from opposing sides of a feed. The first arm and a portion of the housing may radiate in a cellular ultra-high band. The first arm may have a fundamental mode that radiates in a first ultra-wideband (UWB) communications band at 6.5 GHz. The second arm may have a fundamental mode that radiates in a 5.0 GHz wireless local area network band. The first and second arms may have a harmonic mode that radiates in a second UWB communications band at 8.0 GHz. The antenna may convey radio-frequency signals in each of these communications bands without the need for adjusting components in the antenna to switch between the UWB communications bands.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: April 12, 2022
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Xu Han, Salih Yarga, Jingni Zhong, Hao Xu, Mattia Pascolini
  • Patent number: 11303015
    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. An antenna in the electronic device may have an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna ground for the antenna may include a conductive frame for the display. The conductive frame may have a first portion that is separated from the antenna resonating element arm by a first distance and a second portion that is separated from the antenna resonating element arm by a second distance that is less than the first distance. The second portion may be configured to form a distributed impedance matching capacitance with the antenna resonating element arm.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 12, 2022
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Yijun Zhou, Yiren Wang, Hao Xu, Ming-Ju Tsai, Mattia Pascolini
  • Publication number: 20220094059
    Abstract: An electronic device may be provided with wireless circuitry and a housing with upper and lower ends. The lower end may include first and second open slot antennas that are directly fed by respective feeds and that radiate in a cellular ultra-high band. The lower end may also include first and second inverted-F antennas. The upper end may include third and fourth inverted-F antennas. The first inverted-F antenna may have a first feed that conveys currents below 2700 MHz and a second feed that conveys antenna currents in the cellular ultra-high band, a wireless local area network band, and/or ultra-wideband frequency bands. If desired, the upper end may include a third open slot antenna that is directly fed by a corresponding antenna feed and that radiates in the cellular ultra-high band and/or in the ultra-wideband frequency bands.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Inventors: Yiren Wang, Daisong Zhang, Erdinc Irci, Han Wang, Hongfei Hu, Jingni Zhong, Liang Han, Mattia Pascolini, Ming Chen, Nanbo Jin, Tiejun Yu, Yijun Zhou, Yuan Tao, Yuancheng Xu