Patents by Inventor Mattias Kamfors

Mattias Kamfors has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230185309
    Abstract: A robotic work tool system (200) comprising a robotic work tool (100) comprising a controller (110), the controller (110) being configured to determine an area locality (310) associated with a hindrance; determine a classifier (C) associated with the area locality (310); and determine an action for the robotic work tool (100), wherein the action is based on the classifier (C).
    Type: Application
    Filed: March 24, 2021
    Publication date: June 15, 2023
    Inventors: Tommy Glimberg, Stefan Grufman, Fredrik Kallström, Mattias Kamfors, Marcus Liljedahl, Björn Mannefred, Beppe Hellsin
  • Publication number: 20230176584
    Abstract: The present disclosure relates to an outdoor robotic work tool interaction station (200) having a longitudinal extension (E) along which the interaction station (200) is adapted to receive an oncoming outdoor robotic work tool (100), and a vertical extension (V) that is perpendicular to the longitudinal extension (E). The interaction station (200) further comprises at least one radar reflective target (211, 212, 213).
    Type: Application
    Filed: June 4, 2021
    Publication date: June 8, 2023
    Inventors: Mattias Kamfors, Rickard Landin
  • Publication number: 20230034100
    Abstract: A robotic work tool system (200) comprising a robotic work tool (100), the robotic work tool (100) being configured to determine (410) that the robotic work tool (100) has entered a state of limited movement; determine (420) an exit path; and exit (430) the state of limited movement by navigating the exit path.
    Type: Application
    Filed: December 2, 2020
    Publication date: February 2, 2023
    Inventors: Jonas Holgersson, Stefan Bergström, Hugo Johansson, Erik Starhagen, Claes Johannesson, Marcus Stjärnås, Fredrik Klackensjö, Tommy Glimberg, Stefan Grufman, Mattias Kamfors, Marcus Liljedahl, Björn Mannefred, Beppe Hellsin
  • Publication number: 20230010420
    Abstract: A method for operating a robotic work tool (1) comprising a sensor for detecting a boundary wire (3) demarcating a work area (2). The method comprises the steps of detecting (9) at least a partial crossing of the boundary wire (3), allowing (12) a crossing of the boundary wire (3) by an offset, switching (8) between a first offset setting and at least a second offset setting of the work tool (1) based on one or more events (7). A robotic work tool (1) comprises a controller for controlling the operation of the robotic working tool (1). The controller is configured to: control the work tool (1) to operate within the work area (2), determine whether the work tool (1) crosses the boundary wire (3), allow a crossing of the wire (3) by the offset, and switch (8) between at least two offset settings stored in the work tool (1).
    Type: Application
    Filed: October 15, 2020
    Publication date: January 12, 2023
    Inventors: Tommy Glimberg, Stefan Grufman, Fredrik Kallström, Mattias Kamfors, Marcus Liljedahl, Björn Mannefred, Beppe Hellsin
  • Publication number: 20220342425
    Abstract: A robotic work tool system (200) for avoiding trails from a robotic work tool (100) in a transit zone (300) in which the robotic work tool (100) is allowed to travel from a start point (320) to a goal point (330) along a travel path (310). The system (200) comprises at least one memory (120,220) configured to store information about the transit zone (300), at least one robotic work tool (100) configured to travel along the travel path (310) and at least one controller (110,210) for controlling operation of the robotic work tool (100). The controller (110,210) is configured to receive, from the memory (120,220), information about the transit zone (300) and generate, based on the transit zone (300), the travel path (310) for the robotic work tool (100) from the start point (320) to the goal point (330). The generated travel path (310) is configured to differ from previously generated travel paths.
    Type: Application
    Filed: September 14, 2020
    Publication date: October 27, 2022
    Inventors: Tommy Glimberg, Stefan Grufman, Fredrik Kallström, Mattias Kamfors, Marcus Liljedahl, Björn Mannefred, Beppe Hesssin
  • Publication number: 20220295696
    Abstract: A robotic work tool system comprising at least one robotic work tool arranged to operate in a work area, the robotic work tool comprising at least one sensor and a communication interface, the robotic work tool being configured to establish a connection to a cloud service through said communication interface; receive data gathered by the at least one sensor and transmit the gathered data to the cloud service causing the cloud service to analyze the gathered data; receive operating data from the cloud service; and to operate at least one robotic work tool based on the operating data received from the cloud service.
    Type: Application
    Filed: August 17, 2020
    Publication date: September 22, 2022
    Inventors: Jonas Holgersson, Marcus Liljedahl, Jonas Rangsjö, Andreas Peterson, Patrik Jägenstedt, Mattias Kamfors
  • Patent number: 11221628
    Abstract: A robotic work tool (100) comprising a controller (110) and at least one magnetic sensor (170) arranged to sense a magnetic boundary signal emitted by a boundary wire, and a first magnetic guide signal emitted by a first guide wire (261), wherein the controller (110) is configured to: detect an at least partial crossing of the first guide wire (261) from a first work zone to a second work zone, determine an operating status and if the operating status indicates that a crossing is allowed, allow the robotic work tool to cross the first guide wire (261) to the second work zone, and if not, control the operation of the robotic work tool so that the first guide wire (261) is not crossed.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: January 11, 2022
    Assignee: Husqvarna AB
    Inventors: Jonas Holgersson, Mattias Kamfors, Stefan Bergström
  • Patent number: 11112532
    Abstract: A robotic vehicle may be configured to incorporate multiple sensors to make the robotic vehicle capable of collecting, feeding, and uploading weather data into an aggregation agent to form a geospatial map or weather service. In this regard, in some cases, the robotic vehicle may include an onboard vehicle positioning module and sensor network to give the robotic vehicle a collective understanding of its environment, and enable it to autonomously collect and upload weather data to an aggregation agent for corresponding locations.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 7, 2021
    Assignee: HUSQVARNA AB
    Inventors: Patrik Jägenstedt, Tom Soberg, Magnus Öhrlund, Andreas Källming, Fredrik Kallström, Jonas Holgersson, Mattias Kamfors, Stefan Grufman
  • Patent number: 10858041
    Abstract: A robotic vehicle may include a first chassis platform including a first wheel assembly, a second chassis platform including a second wheel assembly where the first and second chassis platforms are spaced apart from each other, and a combination linkage operably coupling the first and second chassis platforms. The combination linkage may be operably coupled to the first chassis platform via a first link and is operably coupled to the second chassis platform via a second link. The combination linkage employs at least two different coupling features to operably couple the first and second chassis platforms. The at least two different coupling features include at least any two among a fixed attachment, an attachment that enables rotation about a turning axis, and an attachment that enables pivoting about a pivot axis that is substantially perpendicular to the turning axis.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: December 8, 2020
    Assignee: HUSQVARNA AB
    Inventors: Patrik Jägenstedt, Fredrik Kallström, Magnus Bergenholm, Mats Svensson, Magnus Öhrlund, Mattias Kamfors
  • Patent number: 10842074
    Abstract: A robotic work tool system (200) comprising further comprising a charging station (210) and a robotic work tool (100), the robotic work tool system (200) being configured to determine a change in weather and to take preservation action. The robotic work tool may detect the change in weather by detecting an electrical charge buildup in the boundary wire. The robotic work tool may take the preservative action by the robotic work tool (100) distancing itself from the charging station (210).
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: November 24, 2020
    Assignee: HUSQVARNA AB
    Inventors: Patrik Jägenstedt, Tom Söberg, Magnus Öhrlund, Andreas Källming, Fredrik Kallström, Jonas Holgersson, Mattias Kamfors, Johan Öster
  • Publication number: 20200356110
    Abstract: A robotic work tool (100) comprising a controller (110) and at least one magnetic sensor (170) arranged to sense a magnetic boundary signal emitted by a boundary wire, and a first magnetic guide signal emitted by a first guide wire (261), wherein the controller (110) is configured to: detect an at least partial crossing of the first guide wire (261) from a first work zone to a second work zone, determine an operating status and if the operating status indicates that a crossing is allowed, allow the robotic work tool to cross the first guide wire (261) to the second work zone, and if not, control the operation of the robotic work tool so that the first guide wire (261) is not crossed.
    Type: Application
    Filed: August 14, 2018
    Publication date: November 12, 2020
    Inventors: Jonas Holgersson, Mattias Kamfors, Stefan Bergström
  • Publication number: 20200281114
    Abstract: A robotic work tool system comprising at least one input device, a robotic work tool and at least one controller. The at least one input device is configured to receive trajectory data representing a desired travel route. The trajectory data includes at least one of a distance value, a direction value and a velocity value. The robotic work tool comprises at least one motor configured to drive at least one wheel of the robotic work tool. The at least one controller is configured to receive the trajectory data and to determine a control sequence for the at least one motor. The control sequence is a sequence of different power and/or velocities which the at least one wheel is to be driven with. The at least one controller is further configured to control the at least one motor according to the determined control sequence. The at least one controller is further configured to receive and process travel data relating to the driven travel route.
    Type: Application
    Filed: April 7, 2020
    Publication date: September 10, 2020
    Inventors: Patrik Jägenstedt, Mikael Alexiusson, Stefan Grufman, Fredrik Kallström, Mattias Kamfors
  • Publication number: 20190357431
    Abstract: A robotic lawnmower system comprising a charging station, a living object sensor and a robotic lawnmower configured to operate within a work area according to an operating schedule, the robotic lawnmower being configured to detect and identify an object as a living object; and adapt the operating schedule accordingly.
    Type: Application
    Filed: January 9, 2018
    Publication date: November 28, 2019
    Inventors: Mattias Kamfors, Magnus Öhrlund
  • Patent number: 10444756
    Abstract: A robotic work tool system (200) comprising a charging station (210) and a robotic work tool (100) configured to work within a work area (205) being divided into at least one section (405), the robotic work tool comprising a controller (110) for controlling the operation of the robotic work tool (100) to cause the robotic work tool to move along a trajectory, the robotic work tool (100) being configured to determine that a section boundary is encountered, and if so change the trajectory of the robotic work tool (100) to cause the robotic work tool to remain in the section.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: October 15, 2019
    Assignee: HUSQVARNA AB
    Inventors: Mattias Kamfors, Magnus Öhrlund
  • Patent number: 10405488
    Abstract: A method may include receiving map data descriptive of a plurality of zones located within a parcel of land and receiving information indicative of a plurality of reference coordinates or objects including at least a first and second reference coordinate or object located on the parcel, in which the first and second reference coordinate or object each has corresponding information for defining boundaries for a first workable zone and a second workable zone on the parcel associated therewith, respectively. The method may further include determining the boundaries of the first and second workable zones responsive to detection of at least the first and second reference coordinate or object, respectively. The method may also include receiving time-scheduling instructions for the first and second workable zones, and operating the robotic vehicle to remain within the first and second workable zones in response to the time-scheduling instructions.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: September 10, 2019
    Assignee: HUSQVARNA AB
    Inventors: Mattias Kamfors, Patrik Jägenstedt
  • Publication number: 20190256138
    Abstract: A robotic vehicle may include a first chassis platform including a first wheel assembly, a second chassis platform including a second wheel assembly where the first and second chassis platforms are spaced apart from each other, and a combination linkage operably coupling the first and second chassis platforms. The combination linkage may be operably coupled to the first chassis platform via a first link and is operably coupled to the second chassis platform via a second link. The combination linkage employs at least two different coupling features to operably couple the first and second chassis platforms. The at least two different coupling features include at least any two among a fixed attachment, an attachment that enables rotation about a turning axis, and an attachment that enables pivoting about a pivot axis that is substantially perpendicular to the turning axis.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 22, 2019
    Inventors: Patrik Jägenstedt, Fredrik Kallström, Magnus Bergenholm, Mats Svensson, Magnus Öhrlund, Mattias Kamfors
  • Patent number: 10365661
    Abstract: A robotic work tool system (200) comprising a charging station (210) and a robotic work tool (100), said robotic work tool (100) comprising a position determining device (190) and a controller (210), wherein said controller (210) is configured to determine a current position for the robotic work tool (100) based on the position determining device (190), determine a first distance from the current position to said charging station (210), cause said robotic work tool (100) to travel a predetermined distance or for a predetermined time, determine a new current position for the robotic work tool (100) based on the position determining device (190), determine a second distance from the new current position to said charging station (210), determine if the second distance is larger than the first distance; and if so, cause the robotic work tool (100) to turn towards the charging station (210).
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 30, 2019
    Assignee: HUSQVARNA AB
    Inventors: Patrik Jägenstedt, Mattias Kamfors
  • Patent number: 10259498
    Abstract: A robotic vehicle may include a first chassis platform including a first wheel assembly, a second chassis platform including a second wheel assembly where the first and second chassis platforms are spaced apart from each other, and a combination linkage operably coupling the first and second chassis platforms. The combination linkage may be operably coupled to the first chassis platform via a first link and is operably coupled to the second chassis platform via a second link. The combination linkage employs at least two different coupling features to operably couple the first and second chassis platforms. The at least two different coupling features include at least any two among a fixed attachment, an attachment that enables rotation about a turning axis, and an attachment that enables pivoting about a pivot axis that is substantially perpendicular to the turning axis.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: April 16, 2019
    Assignee: HUSQVARNA AB
    Inventors: Patrik Jägenstedt, Fredrik Kallström, Magnus Bergenholm, Mats Svensson, Magnus Öhrlund, Mattias Kamfors
  • Publication number: 20180255704
    Abstract: A method may include receiving map data descriptive of a plurality of zones located within a parcel of land and receiving information indicative of a plurality of reference coordinates or objects including at least a first and second reference coordinate or object located on the parcel, in which the first and second reference coordinate or object each has corresponding information for defining boundaries for a first workable zone and a second workable zone on the parcel associated therewith, respectively. The method may further include determining the boundaries of the first and second workable zones responsive to detection of at least the first and second reference coordinate or object, respectively. The method may also include receiving time-scheduling instructions for the first and second workable zones, and operating the robotic vehicle to remain within the first and second workable zones in response to the time-scheduling instructions.
    Type: Application
    Filed: October 19, 2015
    Publication date: September 13, 2018
    Inventors: Mattias Kamfors, Patrik Jägenstedt
  • Publication number: 20180222528
    Abstract: A robotic vehicle may include a first chassis platform including a first wheel assembly, a second chassis platform including a second wheel assembly where the first and second chassis platforms are spaced apart from each other, and a combination linkage operably coupling the first and second chassis platforms. The combination linkage may be operably coupled to the first chassis platform via a first link and is operably coupled to the second chassis platform via a second link. The combination linkage employs at least two different coupling features to operably couple the first and second chassis platforms. The at least two different coupling features include at least any two among a fixed attachment, an attachment that enables rotation about a turning axis, and an attachment that enables pivoting about a pivot axis that is substantially perpendicular to the turning axis.
    Type: Application
    Filed: November 25, 2015
    Publication date: August 9, 2018
    Inventors: Patrik Jägenstedt, Fredrik Kallström, Magnus Bergenholm, Mats Svensson, Magnus Öhrlund, Mattias Kamfors