Patents by Inventor Matu J. Shah

Matu J. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7772335
    Abstract: The invention relates to a method for converting an oxygenated hydrocarbon feedstock into an olefin product comprising: (a) forming a CHA framework type aluminosilicate sieve catalyst made from a substantially fluoride-free synthesis mixture comprising silicon and aluminum sources, a slurry medium, and a template, wherein the sieve is substantially free from framework phosphorus and exhibits a Si/Al ratio from about 40-60; (b) optionally formulating the molecular sieve catalyst with an oxidized aluminum-containing precursor matrix material and a clay binder to form a molecular sieve catalyst composition; (c) activating the catalyst by removing/decomposing the template; and (d) contacting the activated catalyst with the feedstock under conditions sufficient to form an olefin product comprising ?about 65% by weight, on a water-free basis, of ethylene and propylene and having an ethylene-to-propylene ratio ?about 1.2. Ethylene- and propylene-containing polymers can be formed from the olefin product.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: August 10, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, John F. Brody, Matu J. Shah
  • Patent number: 7708976
    Abstract: A novel small pore (metallo)aluminophosphate molecular sieve is disclosed. The as-synthesized material has an X-ray diffraction pattern including the lines listed in Table 1 and is produced in the presence of fluoride ions and 4-dimethylaminopyridine as structure directing agent. The silicoaluminophosphate material has methanol conversion activity and n-hexane cracking activity.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: May 4, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 7670589
    Abstract: The synthesis of a crystalline material, in particular, a high silica zeolite, comprising a chabazite-type framework molecular sieve is conducted in the presence of an organic directing agent having the formula: [R1R2R3N—R4]+Q? wherein R1 and R2 are independently selected from hydrocarbyl groups and hydroxy-substituted hydrocarbyl groups having from 1 to 3 carbon atoms, provided that R1 and R2 may be joined to form a nitrogen-containing heterocyclic structure, R3 is an alkyl group having 2 to 4 carbon atoms and R4 is selected from a 4- to 8-membered cycloalkyl group, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms; and a 4- to 8-membered heterocyclic group having from 1 to 3 heteroatoms, said heterocyclic group being, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms and the or each heteroatom in said heterocyclic group being selected from the group consisting of O, N, and S, or R3 and R4 are hydrocarbyl groups having from 1 to 3 carbon a
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: March 2, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld Maria Mertens, Matu J. Shah, Marc H. Anthonis, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder, Anthony F. Volpe, Jr.
  • Patent number: 7635462
    Abstract: The present invention relates to new methods of making crystalline materials isostructural to ITQ-21, as well as to new crystalline materials obtainable by such methods, and their use in hydrocarbon conversion processes.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: December 22, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20090275789
    Abstract: A method is disclosed of treating a porous crystalline molecular sieve having a pore size less than or equal to about 5 Angstroms to decrease its coke selectivity in oxygenate to olefin conversion reactions. The method comprises contacting the molecular sieve with an acid having a kinetic diameter greater than or equal to that of acetic acid.
    Type: Application
    Filed: March 9, 2009
    Publication date: November 5, 2009
    Inventors: Guang Cao, Gordon J. Kennedy, Matu J. Shah
  • Publication number: 20090247802
    Abstract: In a method of synthesizing an aluminophosphate or metalloaluminophosphate molecular sieve, a synthesis mixture is provided comprising water, a source of aluminum, a source of phosphorus, optionally a source of a metal other than aluminum, a tertiary amine, and an alkylating agent capable of reacting with said tertiary amine to form a quaternary ammonium compound capable of directing the synthesis of said molecular sieve. The synthesis mixture is maintained under conditions sufficient to cause the alkylating agent to react with the tertiary amine to produce the quaternary ammonium compound and to induce crystallization of the molecular sieve.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Inventors: Guang Cao, Mobae Afeworki, Matu J. Shah, Machteld Maria Mertens
  • Patent number: 7498011
    Abstract: A large pore (metallo)aluminophosphate molecular sieve is disclosed The material has an X-ray diffraction pattern including the lines listed in Table 4 and is synthesized in the presence of 4-dimethylaminopyridine as structure directing agent.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: March 3, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah, John F. Brody, Douglas Lewis Dorset, Karl G. Strohmaier
  • Publication number: 20090018379
    Abstract: In a method of synthesizing a silicoaluminophosphate or aluminophosphate molecular sieve comprising a CHA framework-type material, a synthesis mixture is provided comprising a source of aluminum, a source of phosphorus, optionally a source of silicon and at least one organic template of formula (I): [R1R2R3R4N]+ X???(I) wherein each of R1, R2, R3, and R4 is independently an acyclic alkyl group having at least one carbon atom, the total number of carbon atoms in said alkyl groups R1, R2, R3, and R4 is greater than 8 but less than 16, and X? is an anion. The synthesis mixture can then be crystallized to produce the desired molecular sieve.
    Type: Application
    Filed: June 11, 2008
    Publication date: January 15, 2009
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20080107594
    Abstract: A process for synthesizing the porous crystalline material ITQ-12 is disclosed and employs an organic directing agent having the formula: where n is an integer from 1 to 3 and Q? is an anion. The resultant ITQ-12 is useful in as a catalyst in chemical conversion reactions and as an adsorbent for gas separation.
    Type: Application
    Filed: October 5, 2007
    Publication date: May 8, 2008
    Inventors: Guang Cao, Matu J. Shah, Sebastian C. Reyes
  • Publication number: 20080071128
    Abstract: The present invention relates to new methods of making crystalline materials isostructural to ITQ-21, as well as to new crystalline materials obtainable by such methods, and their use in hydrocarbon conversion processes.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 20, 2008
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20070287874
    Abstract: A molecular sieve comprises at least one intergrown phase of an AFX framework-type molecular sieve and a CHA framework-type molecular sieve and is conveniently synthesized using a combination of N,N,N?N?-tetramethylhexane-1,6-diamine and N,N-dimethylcyclohexylamine as organic directing agents.
    Type: Application
    Filed: April 19, 2007
    Publication date: December 13, 2007
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20070286798
    Abstract: A method is disclosed of treating a crystalline material comprising a CHA framework-type molecular sieve, wherein said crystalline material has a composition and involving the molar relationship: (n)X2O3:YO2, where X is a trivalent element, Y is a tetravalent element, and n is less than 0.07, and wherein the crystalline material does not comprise a silicoaluminophosphate, is substantially free of framework phosphorus, or both. The method can comprise treating the crystalline material with steam under conditions such that the prime olefin selectivity of the treated material in an oxygenate conversion process is greater than the prime olefin selectivity of the untreated material in the same process.
    Type: Application
    Filed: May 1, 2007
    Publication date: December 13, 2007
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 7247287
    Abstract: The invention is directed to a method of synthesising silicoaluminophosphate and aluminophosphate molecular sieves using synthesis templates that contain at least one template of general formula R1R2N—R3, wherein R1 and R2 are independently selected from the group consisting of alkyl groups having from 1 to 3 carbon atoms and hydroxyalkyl groups having from 1 to 3 carbon atoms; R3 is selected from the group consisting of 4- to 8-membered cycloalkyl groups, optionally substituted by 1 to 3 alkyl groups having from 1 to 3 carbon atoms, and 4- to 8-membered heterocyclic groups having from 1 to 3 heteroatoms, said heterocyclic groups being optionally substituted by 1 to 3 alkyl groups having from 1 to 3 carbon atoms and the heteroatoms in said heterocyclic groups being selected from the group consisting of O, N, and S. In particular, the present invention relates to the synthesis of silicoaluminophosphate molecular sieves of the CHA framework type having a low silicon to aluminium atomic ratio.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 7232787
    Abstract: The invention is directed to a method of synthesizing a molecular sieve. In particular, the invention is directed to a method for synthesizing a molecular sieve, especially a silicoaluminophosphate molecular sieve, in the presence of a templating agent and a polymeric base. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: June 19, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 6927187
    Abstract: The invention is directed to a method of synthesising silicoaluminophosphate molecular sieves and in particular those of framework type CHA and AEL. The method uses synthesis templates that comprise one or more tertiary dialkylbutylamines, wherein the alkyl groups are not butyl. The use of such templates. especially N,N-dimethylbutylamine, results in SAPO-11 of a desirable platelet morphology.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: August 9, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah, John F. Brody
  • Patent number: 6914030
    Abstract: The invention is directed to a method of synthesizing silicoaluminophosphate molecular sieves using synthesis templates that contain at least one dimethylamino moiety, selected from one or more of N,N-dimethylethanolamine, N,N-dimethylpropanolamine, N,N-dimethylbutanolamine, N,N-dimethylheptanolamine, N,N-dimethylhexanolamine, N,N-dimethylethylenediamine, N,N-dimethylbutylenediamine, N,N-dimethylheptylenediamine, N,N-dimethylhexylenediamine 1-dimethylamino-2-propanol, N,N-dimethylethylamine, N,N-dimethylpropylamine, N,N-dimethylpentylamine, N,N-dimethylhexylamine and N,N-dimethylheptylamine. The use of dimethylamino moiety containing templates results in good quality SAPO molecular sieves of CHA framework type.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: July 5, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20040253163
    Abstract: The invention is directed to a method of synthesising silicoaluminophosphate and aluminophosphate molecular sieves using synthesis templates that contain at least one template of general formula R1R2N—R3, wherein R1 and R2 are independently selected from the group consisting of alkyl groups having from 1 to 3 carbon atoms and hydroxyalkyl groups having from 1 to 3 carbon atoms; R3 is selected from the group consisting of 4- to 8-membered cycloalkyl groups, optionally substituted by 1 to 3 alkyl groups having from 1 to 3 carbon atoms, and 4- to 8-membered heterocyclic groups having from 1 to 3 heteroatoms, said heterocyclic groups being optionally substituted by 1 to 3 alkyl groups having from 1 to 3 carbon atoms and the heteroatoms in said heterocyclic groups being selected from the group consisting of O, N, and S. In particular, the present invention relates to the synthesis of silicoaluminophosphate molecular sieves of the CHA framework type having a low silicon to aluminium atomic ratio.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 16, 2004
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 6793901
    Abstract: The invention is directed to a method for preparing microporous aluminophosphate or silicoaluminophosphate molecular sieves having the CHA framework type, the process comprising the steps of a) forming a reaction mixture comprising a source of aluminum, a source of phosphorus, optionally a source of silicon, at least one source of fluoride ions and at least one template containing one or more N,N-dimethylamino moieties, b) inducing crystallization of aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture; c) recovering aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture. The invention also relates to the molecular sieves obtained by this method and to molecular sieve catalyst compositions containing these molecular sieves.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: September 21, 2004
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Guang Cao, Matu J. Shah, Karl G. Strohmaier, Richard B. Hall
  • Patent number: 6767858
    Abstract: The invention is directed to a method of synthesizing aluminophosphate and silicoaluminophosphate molecular sieves and in particular to the synthesis of aluminophosphate and silicoaluminophosphate molecular sieves using N-methylethanolamine as template with or without a source of fluoride. The use of N-methylethanolamine as template results in good quality AlPO4 of CHA framework type and SAPO molecular sieves of CHA framework type with low levels of silicon in high yield.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: July 27, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20040082466
    Abstract: The invention is directed to a method of synthesizing a molecular sieve. In particular, the invention is directed to a method for synthesizing a molecular sieve, especially a silicoaluminophosphate molecular sieve, in the presence of a templating agent and a polymeric base. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Application
    Filed: October 22, 2003
    Publication date: April 29, 2004
    Inventors: Guang Cao, Matu J. Shah