Patents by Inventor Maureen E. LYBARGER

Maureen E. LYBARGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405332
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Inventors: Maureen E. LYBARGER, Jian CAO, Wade M. DEMMER, Michael W. HEINKS, Jean E. HUDSON, Michael KEMMERER, James J. ST. MARTIN, Todd J. SHELDON
  • Patent number: 11786739
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic Inc.
    Inventors: Maureen E. Lybarger, Jian Cao, Wade M. Demmer, Michael W. Heinks, Jean E. Hudson, Michael Kemmerer, James J. St. Martin, Todd J. Sheldon
  • Publication number: 20230181911
    Abstract: A medical device is configured to sense a cardiac electrical signal and determine from the cardiac electrical signal at least one of a maximum peak amplitude of a positive slope of the cardiac electrical signal and a maximum peak time interval from a pacing pulse to the maximum peak amplitude. The device is configured to determine a capture type of the pacing pulse based on at least one or both of the maximum peak amplitude and the maximum peak time interval.
    Type: Application
    Filed: February 10, 2023
    Publication date: June 15, 2023
    Inventors: Jian CAO, Wade M. DEMMER, Maureen E. LYBARGER, Elizabeth A. MATTSON, Todd J. SHELDON, Zhongping YANG, Xiaohong ZHOU
  • Publication number: 20230149721
    Abstract: A method includes detecting, by an implantable medical device (IMD), attachment to the IMD of at least one implantable medical lead with at least one electrode; and triggering by the IMD, based on the detecting of the attachment to the IMD of the at least one medical lead, a device test sequence in which the IMD performs the following qualification tests over an evaluation period: detecting an impedance for at least one electrical path that includes the at least one electrode to determine a connection status of the IMD to the at least one electrode; and comparing EGM (electrogram) amplitudes of the patient over an EGM test period against a predetermined threshold.
    Type: Application
    Filed: November 17, 2022
    Publication date: May 18, 2023
    Inventors: John C. Stroebel, Maureen E. Lybarger, Mohac Tekmen, Greggory R. Herr, John D. Golnitz, Kristen J. Cattin, Eric A. Schilling, Eric R. Williams, Teresa A. Whitman, Mikayle A Holm, Michelle M. Galarneau, Tara M. Treml, Derek W. Prusener
  • Patent number: 11607550
    Abstract: A medical device is configured to sense a cardiac electrical signal and determine from the cardiac electrical signal at least one of a maximum peak amplitude of a positive slope of the cardiac electrical signal and a maximum peak time interval from a pacing pulse to the maximum peak amplitude. The device is configured to determine a capture type of the pacing pulse based on at least one or both of the maximum peak amplitude and the maximum peak time interval.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: March 21, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Wade M. Demmer, Maureen E. Lybarger, Elizabeth A. Mattson, Todd J. Sheldon, Zhongping Yang, Xiaohong Zhou
  • Publication number: 20220314006
    Abstract: A system includes an implantable medical device (IMD) and processing circuitry. The IMD includes sensing circuitry configured to sense cardiac electrical signals of a patient, and therapy delivery circuitry configured to deliver demand cardiac pacing to a heart of the patient based on the cardiac electrical signals. The processing circuitry is configured to: determine, for each of a plurality of time units, based on the cardiac electrical signals and the delivery of demand cardiac pacing during the time units, a plurality of metrics indicative of a need for continued delivery of demand cardiac pacing to the heart of the patient. The plurality of metrics includes a metric associated with a duration of one or more pacing episodes during the time unit. The processing circuitry is further configured to generate a graphical representation of the plurality of metrics of the plurality of time units for presentation to a user.
    Type: Application
    Filed: March 22, 2022
    Publication date: October 6, 2022
    Inventors: Matthew D. Bonner, Robert D. Musto, Wade M. Demmer, Todd J. Sheldon, Michelle M. Galarneau, Vinod Sharma, Maureen E. Lybarger, Greggory R. Herr, Alyssa L. Paul
  • Publication number: 20210052895
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 25, 2021
    Inventors: Maureen E. LYBARGER, Jian CAO, Wade M. DEMMER, Michael W. HEINKS, Jean E. HUDSON, Michael KEMMERER, James J. ST. MARTIN, Todd J. SHELDON
  • Publication number: 20200406041
    Abstract: A medical device is configured to sense a cardiac electrical signal and determine from the cardiac electrical signal at least one of a maximum peak amplitude of a positive slope of the cardiac electrical signal and a maximum peak time interval from a pacing pulse to the maximum peak amplitude. The device is configured to determine a capture type of the pacing pulse based on at least one or both of the maximum peak amplitude and the maximum peak time interval.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 31, 2020
    Inventors: Jian CAO, Wade M. DEMMER, Maureen E. LYBARGER, Elizabeth A. MATTSON, Todd J. SHELDON, Zhongping YANG, Xiaohong ZHOU
  • Patent number: 10773086
    Abstract: An IMD system receives a near field His bundle electrical signal produced by a patient's heart via a first sensing electrode vector and a far field cardiac electrical signal via a second sensing electrode vector different than the first sensing electrode vector. The IMD system generates His bundle pacing pulses delivered to the patient's heart via a His pacing electrode vector and determines a type of cardiac capture evoked by a His bundle pacing pulse.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: September 15, 2020
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Shawn M. Campbell, Maureen E. Lybarger, Elizabeth A. Mattson, Eric R. Williams, Zhongping Yang
  • Publication number: 20190134404
    Abstract: An IMD system receives a near field His bundle electrical signal produced by a patient's heart via a first sensing electrode vector and a far field cardiac electrical signal via a second sensing electrode vector different than the first sensing electrode vector. The IMD system generates His bundle pacing pulses delivered to the patient's heart via a His pacing electrode vector and determines a type of cardiac capture evoked by a His bundle pacing pulse.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 9, 2019
    Inventors: Todd J. SHELDON, Shawn M. CAMPBELL, Maureen E. LYBARGER, Elizabeth A. MATTSON, Eric R. WILLIAMS, Zhongping YANG