Patents by Inventor Maurice Mason

Maurice Mason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11107878
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 31, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20180348259
    Abstract: A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
    Type: Application
    Filed: July 20, 2018
    Publication date: December 6, 2018
    Applicant: International Business Machines Corporation
    Inventors: Bing Dang, John Knickerbocker, Yang Liu, Maurice Mason, Lubomyr T. Romankiw
  • Patent number: 10132836
    Abstract: A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
    Type: Grant
    Filed: May 9, 2015
    Date of Patent: November 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John Knickerbocker, Yang Liu, Maurice Mason, Lubomyr T. Romankiw
  • Patent number: 10002919
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: June 19, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20180012953
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: September 7, 2017
    Publication date: January 11, 2018
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9793336
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSIENSS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170229533
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: January 20, 2017
    Publication date: August 10, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9590026
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: March 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284786
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284787
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: June 19, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20150340524
    Abstract: A method of fabricating a flexible photovoltaic film cell with an iron diffusion barrier layer. The method includes: providing a foil substrate including iron; forming an iron diffusion barrier layer on the foil substrate, where the iron diffusion barrier layer prevents the iron from diffusing; forming an electrode layer on the iron diffusion barrier layer; and forming at least one light absorber layer on the electrode layer. A flexible photovoltaic film cell is also provided, which cell includes: a foil substrate including iron; an iron diffusion barrier layer formed on the foil substrate to prevent the iron from diffusing; an electrode layer formed on the iron diffusion barrier layer; and at least one light absorber layer formed on the electrode layer.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: Hariklia Deligianni, Lian Guo, Marinus Johannes Petrus Hopstaken, Maurice Mason, Lubomyr T. Romankiw
  • Publication number: 20150241476
    Abstract: A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
    Type: Application
    Filed: May 9, 2015
    Publication date: August 27, 2015
    Applicant: International Business Machines Corporation
    Inventors: Bing Dang, John Knickerbocker, Yang Liu, Maurice Mason, Lubomyr T. Romankiw
  • Patent number: 9105779
    Abstract: A method of fabricating a flexible photovoltaic film cell with an iron diffusion barrier layer. The method includes: providing a foil substrate including iron; forming an iron diffusion barrier layer on the foil substrate, where the iron diffusion barrier layer prevents the iron from diffusing; forming an electrode layer on the iron diffusion barrier layer; and forming at least one light absorber layer on the electrode layer. A flexible photovoltaic film cell is also provided, which cell includes: a foil substrate including iron; an iron diffusion barrier layer formed on the foil substrate to prevent the iron from diffusing; an electrode layer formed on the iron diffusion barrier layer; and at least one light absorber layer formed on the electrode layer.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: August 11, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Lian Guo, Marinus Johannes Petrus Hopstaken, Maurice Mason, Lubomyr T Romankiw
  • Patent number: 9070586
    Abstract: A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
    Type: Grant
    Filed: February 22, 2014
    Date of Patent: June 30, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John Knickerbocker, Yang Liu, Maurice Mason, Lubomyr T Romankiw
  • Publication number: 20130269780
    Abstract: The present invention relates to a method for fabricating a thin layer made of a alloy and having photovoltaic properties. The method according to the invention comprises first steps of: a) depositing an adaptation layer (MO) on a substrate (SUB), b) depositing at least one layer (SEED) comprising at least elements I and/or III, on said adaptation layer. The adaptation layer is deposited under near vacuum conditions and step b) comprises a first operation of depositing a first layer of I and/or III elements, under same conditions as the deposition of the adaptation layer, without exposing to air the adaptation layer.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 17, 2013
    Applicant: NEXCIS
    Inventors: Pierre-Philippe Grand, Jesus Salvadoe Jaime Ferrer, Emmanuel Roche, Hariklia Deligianni, Raman Vaidyanathan, Kathleen B. Reuter, Qiang Huang, Lubomyr Romankiw, Maurice Mason, Donna S. Zupanski-Nielsen
  • Publication number: 20130074915
    Abstract: A method of fabricating a flexible photovoltaic film cell with an iron diffusion barrier layer. The method includes: providing a foil substrate including iron; forming an iron diffusion barrier layer on the foil substrate, where the iron diffusion barrier layer prevents the iron from diffusing; forming an electrode layer on the iron diffusion barrier layer; and forming at least one light absorber layer on the electrode layer. A flexible photovoltaic film cell is also provided, which cell includes: a foil substrate including iron; an iron diffusion barrier layer formed on the foil substrate to prevent the iron from diffusing; an electrode layer formed on the iron diffusion barrier layer; and at least one light absorber layer formed on the electrode layer.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Lian Guo, Marinus Johannes Petrus Hopstaken, Maurice Mason, Lubomyr T. Romankiw