Patents by Inventor Mauricio Terrones

Mauricio Terrones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958038
    Abstract: A group of reductive 2D materials (R2D) with extended reactive vacancies and a method for making the R2D with extended reactive vacancies are provided, especially the example of the reductive boron nitride (RBN). To create defects such as vacancies, boron nitride (BN) powders are milled at cryogenic temperatures. Vacancies are produced by milling, and the vacancies can be used to reduce various metal nanostructures on RBN. Due to the thermal stability of the RBN and the enhanced catalytic performance of metal nanostructures, RBN-metals can be used for different catalysts, including electrochemical catalysts and high temperature catalysts.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: April 16, 2024
    Assignee: The Penn State Research Foundation
    Inventors: Mauricio Terrones, Yu Lei, He Liu, Kazunori Fujisawa, Ana Laura Elias Arriaga, Tianyi Zhang, Rodolfo Cruz-Silva, Morinobu Endo, Xiaoxing Wang, Cynthia Guerrero-Bermea
  • Publication number: 20240018273
    Abstract: Provided are compositions that include at least one two-dimensional layer of an inorganic compound and at least one layer of an organic compound in the form of one or more polypeptides. Methods of making and using the materials are provided. The organic layer contains one or more polypeptides, each of which have alternating repeats of crystallite-forming subsequences and amorphous subsequences. The crystallite-forming subsequences form crystallites comprising stacks of one or more ?-sheets. The amorphous subsequences form a network of hydrogen bonds. A method includes i) combining one or more polypeptides with an inorganic material and an organic solvent, and ii) depositing one or more polypeptides, the inorganic material and the organic solvent onto a substrate. These steps can be repeated to provide a composite material that is a multilayer composite material. The composite materials can be used in a wide array of textile, electronic, semi-conducting, and other applications.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 18, 2024
    Inventors: Melik DEMIREL, Mert VURAL, Mauricio TERRONES, Yu LEI, Ibrahim Tarik OZBOLAT
  • Patent number: 11739164
    Abstract: Provided are compositions that include at least one two-dimensional layer of an inorganic compound and at least one layer of an organic compound in the form of one or more polypeptides. Methods of making and using the materials are provided. The organic layer contains one or more polypeptides, each of which have alternating repeats of crystallite-forming subsequences and amorphous subsequences. The crystallite-forming subsequences form crystallites comprising stacks of one or more beta-sheets. The amorphous subsequences form a network of hydrogen bonds. A method includes i) combining one or more polypeptides with an inorganic material and an organic solvent, and ii) depositing one or more polypeptides, the inorganic material and the organic solvent onto a substrate. These steps can be repeated to provide a composite material that is a multilayer composite material. The composite materials can be used in a wide array of textile, electronic, semi-conducting, and other applications.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: August 29, 2023
    Assignee: The Penn State Research Foundation
    Inventors: Melik Demirel, Mert Vural, Mauricio Terrones, Yu Lei, Ibrahim Tarik Ozbolat
  • Publication number: 20220387990
    Abstract: Embodiments relate to a bioagent capture and identification system including a microfluidic platform for label-free, size-based capture, enrichment, and optical profiling of bioagents using vertically aligned carbon nanotubes coated in gold nanoparticles. Bioagent identification can be automated using machine learning. Captured bioagents remain viable after capture and analysis. In the nanotube fabrication process, catalyst precursor layers are fabricated using patterned stamps. In addition, nanotube diameter and density are increased by increasing the concentration of metal content in the catalyst precursor layer.
    Type: Application
    Filed: November 3, 2020
    Publication date: December 8, 2022
    Inventors: Yin-Ting Yeh, Mauricio Terrones
  • Publication number: 20210370271
    Abstract: A group of reductive 2D materials (R2D) with extended reactive vacancies and a method for making the R2D with extended reactive vacancies are provided, especially the example of the reductive boron nitride (RBN). To create defects such as vacancies, boron nitride (BN) powders are milled at cryogenic temperatures. Vacancies are produced by milling, and the vacancies can be used to reduce various metal nanostructures on RBN. Due to the thermal stability of the RBN and the enhanced catalytic performance of metal nanostructures, RBN-metals can be used for different catalysts, including electrochemical catalysts and high temperature catalysts.
    Type: Application
    Filed: June 11, 2021
    Publication date: December 2, 2021
    Inventors: Mauricio Terrones, Yu Lei, He Liu, Kazunori Fujisawa, Ann Laura Elias Arriaga, Tianyi Zhang, Eduardo Cruz-Silva, Moronobu Endo, Xiaoxing Wang
  • Publication number: 20210302287
    Abstract: The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
    Type: Application
    Filed: April 21, 2021
    Publication date: September 30, 2021
    Inventors: Siyang Zheng, Mauricio Terrones, Yin-Ting Yeh, Yi Tang, Huaguang Lu, Nestor Perea Lopez, Yiqiu Xia
  • Patent number: 11022529
    Abstract: The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 1, 2021
    Assignee: The Penn State Research Foundation
    Inventors: Siyang Zheng, Mauricio Terrones, Yin-Ting Yeh, Yi Tang, Huaguang Lu, Nestor Perea Lopez, Yiqiu Xia
  • Publication number: 20200284706
    Abstract: The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
    Type: Application
    Filed: February 7, 2020
    Publication date: September 10, 2020
    Inventors: Siyang Zheng, Mauricio Terrones, Yin-Ting Yeh, Yi Tang, Huaguang Lu, Nestor Perea Lopez, Yiqiu Xia
  • Patent number: 10737960
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and can soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 11, 2020
    Assignee: CSS Nanotech, Inc.
    Inventors: Daniel Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Publication number: 20200109072
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and can soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Application
    Filed: September 24, 2019
    Publication date: April 9, 2020
    Applicant: CSS Nanotech, Inc.
    Inventors: Daniel Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Patent number: 10598575
    Abstract: The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: March 24, 2020
    Assignee: The Penn State Research Foundation
    Inventors: Siyang Zheng, Mauricio Terrones, Yin-Ting Yeh, Yi Tang, Huaguang Lu, Nestor Perea Lopez, Yiqiu Xia
  • Publication number: 20190352430
    Abstract: Provided are compositions that include at least one two-dimensional layer of an inorganic compound and at least one layer of an organic compound in the form of one or more polypeptides. Methods of making and using the materials are provided. The organic layer contains one or more polypeptides, each of which have alternating repeats of crystallite-forming subsequences and amorphous subsequences. The crystallite-forming subsequences form crystallites comprising stacks of one or more beta-sheets. The amorphous subsequences form a network of hydrogen bonds. A method includes i) combining one or more polypeptides with an inorganic material and an organic solvent, and ii) depositing one or more polypeptides, the inorganic material and the organic solvent onto a substrate. These steps can be repeated to provide a composite material that is a multilayer composite material. The composite materials can be used in a wide array of textile, electronic, semi-conducting, and other applications.
    Type: Application
    Filed: December 14, 2017
    Publication date: November 21, 2019
    Applicant: The Penn State Research Foundation
    Inventors: Melik DEMIREL, Mert VURAL, Mauricio TERRONES, Yu LEI, Ibrahim Tarik OZBOLAT
  • Patent number: 10421675
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading, to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and can soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: September 24, 2019
    Assignee: CSS Nanotech, Inc.
    Inventors: Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Publication number: 20190225516
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and can soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Applicant: CSS NANOTECH, INC.
    Inventors: Daniel Paul HASHIM, Pulickel M. AJAYAN, Mauricio TERRONES
  • Patent number: 10319825
    Abstract: A TMD system in which the first layered material is made of heterobilayers or multilayers with semiconducting direct band gaps is provided. The first layered material may be made of multiple layers of different TMD with different stackings, exhibiting smaller direct and indirect band gaps smaller than monolayer systems of TMD.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: June 11, 2019
    Assignee: The Penn State Research Foundation
    Inventors: Humberto Terrones, Mauricio Terrones, Ana Laura Elias, Nestor Perea-Lopez
  • Patent number: 10294133
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and an soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: May 21, 2019
    Assignee: CSS NANOTECH, INC.
    Inventors: Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Patent number: 9988313
    Abstract: We provide a method for the in situ development of graphene containing silicon carbide (SiC) matrix ceramic composites, and more particularly to the in situ graphene growth within the bulk ceramic through a single-step approach during SiC ceramics densification using an electric current activated/assisted sintering (ECAS) technique. This approach allows processing dense, robust, highly electrical conducting and well dispersed nanocomposites having a percolated graphene network, eliminating the handling of potentially hazardous nanostructures. Graphene/SiC components could be used in technological applications under strong demanding conditions where good electrical, thermal, mechanical and/or tribological properties are required, such as micro and nanoelectromechanical systems (MEMS and NEMS), sensors, actuators, heat exchangers, breaks, components for engines, armors, cutting tools, microturbines or microrotors.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: June 5, 2018
    Assignee: The Penn State Research Foundation
    Inventors: Pilar Miranzo, Carmen Ocal, Maria Isabel Osendi, Manuel Belmonte, Cristina Ramirez, Benito Roman-Manso, Humberto R. Gutierrez, Mauricio Terrones
  • Publication number: 20180040704
    Abstract: Embodiments are presented herein that provide a TMD system wherein the first layered material is made of heterobilayers or multilayers with semiconducting direct band gaps. The first layered material may be made of multiple layers of different TMD with different stackings, exhibiting smaller direct and indirect band gaps smaller than monolayer systems of TMD.
    Type: Application
    Filed: October 4, 2017
    Publication date: February 8, 2018
    Applicant: The Penn State Research Foundation
    Inventors: Humberto Terrones, Mauricio Terrones, Ana Laura Elias, Nestor Perea-Lopez
  • Patent number: 9806164
    Abstract: Embodiments are presented herein that provide a TMD system wherein the first layered material is made of heterobilayers or multilayers with semiconducting direct band gaps. The first layered material may be made of multiple layers of different TMD with different stackings, exhibiting smaller direct and indirect band gaps smaller than monolayer systems of TMD.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 31, 2017
    Assignee: The Penn State Research Foundation
    Inventors: Humberto Terrones, Mauricio Terrones, Ana Laura Elias, Nestor Perea-Lopez
  • Publication number: 20170038285
    Abstract: The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
    Type: Application
    Filed: July 18, 2016
    Publication date: February 9, 2017
    Inventors: Siyang Zheng, Mauricio Terrones, Yin-Ting Yeh, Yi Tang, Huaguang Lu, Nestor Perea Lopez, Yiqiu Xia