Patents by Inventor Max Deffenbaugh

Max Deffenbaugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9759062
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body either above or below ground, such as in a wellbore. The nodes allow for wireless communication between one or more sensors residing at the level of a subsurface formation or along a pipeline, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication along the tubular body at high data transmission rates. A method of transmitting data in a wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along a tubular body to accomplish a wireless transmission of data along the wellbore using acoustic energy.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 12, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Max Deffenbaugh, Stuart R. Keller, David A. Stiles, Timothy I. Morrow, Mark M. Disko, Henry Alan Wolf, Katie M. Walker, Scott W. Clawson
  • Patent number: 9696442
    Abstract: A hydrocarbon exploration method for determining subsurface properties from geophysical survey data. Rock physics trends are identified and for each trend a rock physics model is determined that relates the subsurface property to geophysical properties (103). The uncertainty in the rock physics trends is also estimated (104). A geophysical forward model is selected (105), and its uncertainty is estimated (106). These quantities are used in an optimization process (107) resulting in an estimate of the subsurface property and its uncertainty.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: July 4, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Weichang Li, Max Deffenbaugh, Dominique G. Gillard, Ganglin Chen, Xiaoxia Xu
  • Patent number: 9631485
    Abstract: A system for downhole telemetry employs a series of communications nodes spaced along a tubular body such as a pipe in a wellbore. The nodes allow hybrid wired-and-wireless communication between one or more sensors residing at the level of a subsurface formation and a receiver at the surface. The nodes employ electro-acoustic transducers providing node-to-node communication up a wellbore at high data transmission rates. A method of transmitting data in a wellbore uses a plurality of data transmission nodes situated along a tubular body to deliver an alternating electrical and acoustic transmission of data along the wellbore.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: April 25, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Stuart R. Keller, Timothy I. Morrow, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Publication number: 20170038491
    Abstract: A method and device are described for making in situ measurements of the density and viscosity of downhole fluids at subterranean wells. An oscillator circuit is deployed in the well comprising an amplifier, a feedback loop, and an electromechanical resonator. The electromechanical resonator is a component in the feedback loop of the oscillator circuit, and has a resonance mode that determines the frequency of the oscillator circuit. The electromechanical resonator is also in contact with the fluid such that the density and viscosity of the fluid influence the resonant frequency and damping of the resonator. The frequency of the oscillator is measured by a microcontroller. In one embodiment, the oscillator circuit periodically stops driving the electromechanical resonator such that the oscillation decays and the rate of decay is also measured by the microcontroller. The density and viscosity of the fluid are determined from the frequency and rate of decay of the oscillation.
    Type: Application
    Filed: August 4, 2016
    Publication date: February 9, 2017
    Inventors: Miguel Gonzalez, Max Deffenbaugh, Huseyin Seren, Sebastian Csutak
  • Patent number: 9557434
    Abstract: An electro-acoustic system for downhole telemetry employs a series of communications nodes spaced along a string of casing within a wellbore. The nodes allow wireless communication between transceivers residing within the communications nodes and a receiver at the surface. The transceivers provide node-to-node communication of data indicating elastic waves generated as a result of the formation of subsurface fractures. The data is processed which generates a map of fracture geometry. A method of evaluating fracture geometry in a subsurface formation uses a plurality of data transmission nodes situated along the casing string which send signals to a receiver at the surface. The signals are analyzed which generates a subsurface map.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: January 31, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Stuart R. Keller, Timothy I. Morrow, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Publication number: 20160320769
    Abstract: Embodiments of the invention provide an untethered apparatus for measuring properties along a subterranean well. According to at least one embodiment, the untethered apparatus includes a housing, and one or more sensors configured to measure data along the subterranean well. The data includes one or more physical, chemical, geological or structural properties in the subterranean well. The untethered apparatus further includes a processor configured to control the one or more sensors measuring the data and to store the measured data, and a transmitter configured to transmit the measured data to a receiver arranged external to the subterranean well. Further, the untethered apparatus includes a controller configured to control the buoyancy or the drag of the untethered apparatus to control a position of the untethered apparatus in the subterranean well. The processor includes instructions defining measurement parameters for the one or more sensors of the untethered apparatus within the subterranean well.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Applicant: Aramco Services Company
    Inventors: Max DEFFENBAUGH, Gregory D. HAM, Jose Oliverio ALVAREZ, Gregory BERNERO, Sunder RAMACHANDRAN, Miguel GONZALEZ, Sebastian CSUTAK, Christopher POWELL, Huseyin SEREN
  • Publication number: 20160298439
    Abstract: Remotely actuated screenout relief valves, systems and methods are disclosed herein. The methods include providing a proppant slurry stream that includes proppant to a casing conduit that is defined by a casing string that extends within a subterranean formation. The methods further include detecting an operational parameter that is indicative of a screenout event within the casing conduit. Responsive to the detecting, the methods include providing a flush fluid stream to the casing conduit, opening the remotely actuated screenout relief valve, and displacing the proppant from the casing conduit into the subterranean formation with the flush fluid stream via the remotely actuated screenout relief valve. The methods may further include closing the remotely actuated screenout relief valve. The systems include hydrocarbon wells that include the remotely actuated screenout relief valve and/or hydrocarbon wells that include controllers that are configured to perform at least a portion of the methods.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 13, 2016
    Inventors: Timothy I. Morrow, Randy C. Tolman, Renzo M. Angeles Boza, Mark M. Disko, Max Deffenbaugh
  • Publication number: 20150354351
    Abstract: An electro-acoustic system for downhole telemetry employs a series of communications nodes spaced along a string of casing within a wellbore. The nodes allow wireless communication between transceivers residing within the nodes and a receiver at the surface. The transceivers provide node-to-node communication up a wellbore at high data transmission rates for data indicative of fluid flow within the wellbore. A method of monitoring the flow of fluid within a wellbore uses a plurality of data transmission nodes situated along the casing string sending signals to a receiver at the surface. The signals are then analyzed.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 10, 2015
    Inventors: Timothy I. MORROW, Stuart R. KELLER, Max DEFFENBAUGH, Mark M. DISKO, David A. STILES
  • Publication number: 20150300159
    Abstract: An electro-acoustic system for downhole telemetry employs a series of communications nodes spaced along a string of casing within a wellbore. In one embodiment the nodes are placed within the cement sheath surrounding the joints of casing and allow wireless communication between transceivers residing within the communications nodes and a receiver at the surface. The transceivers provide node-to-node communication up a wellbore at high data transmission rates for data indicative of cement sheath integrity. A method of evaluating a cement sheath in a wellbore uses a plurality of data transmission nodes situated along the casing string which send signals to a receiver at the surface. The signals are then analyzed.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 22, 2015
    Inventors: David A. STILES, Stuart R. KELLER, Timothy I. MORROW, Mark M. DISKO, Max DEFFENBAUGH
  • Publication number: 20150292321
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body in a wellbore. Each communications node is associated with a sensor that senses data indicative of a formation condition or a wellbore parameter along a subsurface formation. The data is stored in memory until a logging tool is run into the wellbore. The data is transmitted from the respective communications nodes to a receiver in the logging tool. The data is then transferred to the surface. A method of transmitting data in a wellbore is also provided herein. The method uses a logging tool to harvest data in a wellbore from a plurality of sensor communications nodes.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 15, 2015
    Inventors: Stuart R. KELLER, Timothy I. MORROW, James S. BURNS, Max DEFFENBAUGH, Mark M. DISKO, David A. STILES
  • Publication number: 20150292319
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body either above or below ground, such as in a wellbore. The nodes allow for wireless communication between one or more sensors residing at the level of a subsurface formation or along a pipeline, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication along the tubular body at high data transmission rates. A method of transmitting data in a wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along a tubular body and a specially configured network to accomplish a wireless transmission of data along the wellbore using acoustic energy.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 15, 2015
    Inventors: Mark M. Disko, Timothy I. Morrow, Max Deffenbaugh, Katie M. Walker, Scott W. Clawson, Henry Alan Wolf
  • Publication number: 20150292320
    Abstract: A system for downhole telemetry employs a series of communications nodes spaced along a tubular body such as a pipe in a wellbore. The nodes allow for hybrid wired-and-wireless communication between one or more sensors residing at the level of a subsurface formation, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication partially up a wellbore, and then high speed data transmission using a wire for the remaining distance up to the surface. A method of transmitting data in a wellbore uses a plurality of data transmission nodes situated along a tubular body to deliver wireless signals partially up the wellbore, and then wired signals the remaining distance.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 15, 2015
    Inventors: John M. Lynk, Timothy I. Morrow, Stuart R. Keller, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Publication number: 20150285937
    Abstract: An electro-acoustic system for downhole telemetry employs a series of communications nodes spaced along a string of casing within a wellbore. The nodes allow wireless communication between transceivers residing within the communications nodes and a receiver at the surface. The transceivers provide node-to-node communication of data indicating elastic waves generated as a result of the formation of subsurface fractures. The data is processed which generates a map of fracture geometry. A method of evaluating fracture geometry in a subsurface formation uses a plurality of data transmission nodes situated along the casing string which send signals to a receiver at the surface. The signals are analyzed which generates a subsurface map.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 8, 2015
    Inventors: Stuart R. Keller, Timothy I. Morrow, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Publication number: 20150285066
    Abstract: A system for downhole telemetry employs a series of communications nodes spaced along a tubular body such as a pipe in a wellbore. The nodes allow hybrid wired-and-wireless communication between one or more sensors residing at the level of a subsurface formation and a receiver at the surface. The nodes employ electro-acoustic transducers providing node-to-node communication up a wellbore at high data transmission rates. A method of transmitting data in a wellbore uses a plurality of data transmission nodes situated along a tubular body to deliver an alternating electrical and acoustic transmission of data along the wellbore.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 8, 2015
    Inventors: Stuart R. KELLER, Timothy I. ROW, Max DEFFENBAUGH, Mark M. DISKO, David A. STILES
  • Publication number: 20150285065
    Abstract: An electro-acoustic system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a string of casing within a wellbore. The nodes are placed within the annular region surrounding the joints of casing within the well-bore. The nodes allow for wireless communication between transceivers residing within the communications nodes and a topside communications node at the wellhead. More specifically, the transceivers provide for node-to-node communication up a wellbore at high data transmission rates for data indicative of a parameter within an annular region behind the string of casing. A method of evaluating a parameter within an annular region along a cased-hole wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along the casing string which send signals to a receiver at the surface. The signals are then analyzed.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 8, 2015
    Inventors: David A. Howell, Timothy I. Morrow, Mark M. Disko, Max Deffenbaugh
  • Publication number: 20150275657
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body either above or below ground, such as in a wellbore. The nodes allow for wireless communication between one or more sensors residing at the level of a subsurface formation or along a pipeline, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication along the tubular body at high data transmission rates. A method of transmitting data in a wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along a tubular body to accomplish a wireless transmission of data along the wellbore using acoustic energy.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 1, 2015
    Inventors: Max Deffenbaugh, Stuart R. Keller, David A. Stiles, Timothy I. Morrow, Mark M. Disko, Henry Alan Wolf, Katie M. Walker, Scott W. Clawson
  • Publication number: 20150120196
    Abstract: A hydrocarbon exploration method for determining subsurface properties from geophysical survey data. Rock physics trends are identified and for each trend a rock physics model is determined that relates the subsurface property to geophysical properties (103). The uncertainty in the rock physics trends is also estimated (104). A geophysical forward model is selected (105), and its uncertainty is estimated (106). These quantities are used in an optimization process (107) resulting in an estimate of the subsurface property and its uncertainty.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 30, 2015
    Inventors: Weichang Li, Max Deffenbaugh, Dominique G. Gillard, Ganglin Chen, Xiaoxia Xu
  • Patent number: 8676556
    Abstract: A hydrocarbon exploration method is disclosed for developing a model of at least one effective material property of a subsurface reservoir as a function of the composition and structure of the reservoir rock. In one embodiment, the method comprises: obtaining a 3D image (102) of a rock sample characteristic of a reservoir of interest (101); segmenting the 3D image into compositional classes (103) based on similarities in mineralogy, structure and spatial distribution; selecting a model (105) that relates an effective material property of interest to the volume fractions of each compositional class; and determining the parameters of the model (106). The model may be used to assess the commercial potential of the subsurface reservoir (107).
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Max Deffenbaugh, John H. Dunsmuir, Limin Song, Ganglin Chen, Shiyu Xu, Michael A. Payne, Enru Liu
  • Patent number: 8509028
    Abstract: The invention discloses a way to recover separated seismograms with reduced interference noise by processing vibroseis data recorded (or computer simulated) with multiple vibrators shaking simultaneously or nearly simultaneously (200). A preliminary estimate of the separated seismograms is used to obtain improved seismograms (201). The preliminary estimate is convolved with the vibrator signature and then used to update the seismogram. Primary criteria for performing the update include fitting the field data and satisfying typical criteria of noise-free seismograms (202). Alternative ways to update are disclosed, including signal extraction, modeled noise extraction, constrained optimization based separation, and penalized least-squares based separation. The method is particularly suited for removing noise caused by separating the combined record into separate records for each vibrator, and is advantageous where the number of sweeps is fewer than the number of vibrators (200).
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ramesh Neelamani, Christine E. Krohn, Jerry Krebs, Max Deffenbaugh, John Anderson
  • Publication number: 20120269034
    Abstract: The invention discloses a way to recover separated seismograms with reduced interference noise by processing vibroseis data recorded (or computer simulated) with multiple vibrators shaking simultaneously or nearly simultaneously (200). A preliminary estimate of the separated seismograms is used to obtain improved seismograms (201). The preliminary estimate is convolved with the vibrator signature and then used to update the seismogram. Primary criteria for performing the update include fitting the field data and satisfying typical criteria of noise-free seismograms (202). Alternative ways to update are disclosed, including signal extraction, modeled noise extraction, constrained optimization based separation, and penalized least-squares based separation. The method is particularly suited for removing noise caused by separating the combined record into separate records for each vibrator, and is advantageous where the number of sweeps is fewer than the number of vibrators (200).
    Type: Application
    Filed: June 26, 2012
    Publication date: October 25, 2012
    Inventors: Ramesh Neelamani, Christine E. Krohn, Jerry Krebs, Max Deffenbaugh, John Anderson