Patents by Inventor Max HANEY

Max HANEY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230273109
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 31, 2023
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 11674880
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: June 13, 2023
    Assignee: M & J Scientific, LLC
    Inventors: Max Haney, Michael P. Murphy
  • Publication number: 20220107270
    Abstract: Sample cells, light scattering detectors utilizing the sample cells, and methods for using the same are provided. The sample cell may include a body defining a flowpath extending axially therethrough. The flowpath may include a cylindrical inner section interposed between a first outer section and a second outer section. The first outer section may be frustoconical. A first end portion of the first outer section may be in direct fluid communication with the inner section and may have a cross-sectional area relatively smaller than a cross-sectional area at a second end portion thereof. The body may further define an inlet in direct fluid communication with the inner section. The inlet may be configured to direct a sample to the inner section of the flowpath.
    Type: Application
    Filed: December 15, 2021
    Publication date: April 7, 2022
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 11226287
    Abstract: Sample cells, light scattering detectors utilizing the sample cells, and methods for using the same are provided. The sample cell may include a body defining a flowpath extending axially therethrough. The flowpath may include a cylindrical inner section interposed between a first outer section and a second outer section. The first outer section may be frustoconical. A first end portion of the first outer section may be in direct fluid communication with the inner section and may have a cross-sectional area relatively smaller than a cross-sectional area at a second end portion thereof. The body may further define an inlet in direct fluid communication with the inner section. The inlet may be configured to direct a sample to the inner section of the flowpath.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: January 18, 2022
    Assignee: M & J Scientific, LLC
    Inventors: Max Haney, Michael P. Murphy
  • Publication number: 20210404941
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Application
    Filed: September 9, 2021
    Publication date: December 30, 2021
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 11150175
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: October 19, 2021
    Assignee: M & J Scientific, LLC
    Inventors: Max Haney, Michael P. Murphy
  • Publication number: 20210223172
    Abstract: Sample cells, light scattering detectors utilizing the sample cells, and methods for using the same are provided. The sample cell may include a body defining a flowpath extending axially therethrough. The flowpath may include a cylindrical inner section interposed between a first outer section and a second outer section. The first outer section may be frustoconical. A first end portion of the first outer section may be in direct fluid communication with the inner section and may have a cross-sectional area relatively smaller than a cross-sectional area at a second end portion thereof. The body may further define an inlet in direct fluid communication with the inner section. The inlet may be configured to direct a sample to the inner section of the flowpath.
    Type: Application
    Filed: January 2, 2019
    Publication date: July 22, 2021
    Inventors: Max HANEY, Michael P. MURPHY
  • Publication number: 20210223160
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Application
    Filed: January 2, 2019
    Publication date: July 22, 2021
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 7594428
    Abstract: The method comprising the steps of engaging the flow circuit of the detector with a reference fluid, accepting a sample in the flow circuit of the detector, sensing an attribute of the sample for determining a characteristic of the sample, changing the direction of the flow of the sample in the flow circuit, and purging the sample from the flow circuit such that the flow circuit is ready to accept another sample. Another method provides the steps of engaging the flow circuit of the detector with a reference fluid, inserting a sample in the flow circuit juxtaposed to the reference fluid, sensing an attribute of the sample for determining a characteristic of the sample, and deviating the direction of the flow of the sample from the flow circuit for purging the sample from the flow circuit such that the reference fluid is maintained in the flow circuit.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: September 29, 2009
    Assignee: Viscotek Corporation
    Inventors: Alan Titterton, Max A. Haney
  • Publication number: 20080245133
    Abstract: The method comprising the steps of engaging the flow circuit of the detector with a reference fluid, accepting a sample in the flow circuit of the detector, sensing an attribute of the sample for determining a characteristic of the sample, changing the direction of the flow of the sample in the flow circuit, and purging the sample from the flow circuit such that the flow circuit is ready to accept another sample. Another method provides the steps of engaging the flow circuit of the detector with a reference fluid, inserting a sample in the flow circuit juxtaposed to the reference fluid, sensing an attribute of the sample for determining a characteristic of the sample, and deviating the direction of the flow of the sample from the flow circuit for purging the sample from the flow circuit such that the reference fluid is maintained in the flow circuit.
    Type: Application
    Filed: February 25, 2008
    Publication date: October 9, 2008
    Inventors: Alan Titterton, Max A. Haney
  • Patent number: 4463598
    Abstract: A capillary bridge viscometer is disclosed for measuring the relative viscosity of a solute in a solvent. The bridge contains two (2) fluid flow circuits. One circuit contains two (2) capillaries in series. The second circuit contains two (2) capillaries in series with a valve and an associated liquid reservoir positioned intermediate of the capillaries. A common feed line feeds a first liquid to both fluid flow circuits. With the valve set in one operating position, the first liquid flows through all four (4) capillaries and no pressure differential is established across the bridge. With the valve set in a second operating position, the first liquid exiting the first capillary of the second fluid flow circuit flows into the liquid reservoir and displaces a second liquid stored therein which then flows through the second capillary of the second fluid flow circuit. A differential pressure is established across the bridge which is a function of the viscosity of the second liquid.
    Type: Grant
    Filed: December 10, 1982
    Date of Patent: August 7, 1984
    Inventor: Max A. Haney