Patents by Inventor Max P. McDaniel

Max P. McDaniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9944736
    Abstract: Methods for preparing single and dual metallocene catalyst systems containing an activator-support are disclosed. These methods can include precontacting of the activator-support and an organoaluminum compound, as well as sequential contacting of two different metallocene compounds to form a dual metallocene catalyst system.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: April 17, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ted H. Cymbaluk, Max P. McDaniel, Qing Yang, Dennis L. Holtermann
  • Publication number: 20180094087
    Abstract: A method of preparing a catalyst comprising a) contacting (i) a silica-support, (ii) an oxotitanium compound, (iii) a chromium-containing compound, and (iv) an optional solvent to form a first aqueous mixture comprising a pre-catalyst and a reaction media having from about 1 wt. % to about 99 wt. % water; b) thermally treating the pre-catalyst by heating to a temperature of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst. A method of preparing a catalyst comprising contacting a hydrated support material comprising silica with a chromium-containing compound to form a first aqueous mixture comprising a chrominated support; contacting the first aqueous mixture comprising a chrominated support with a solution comprising (i) a solvent and (ii) an oxotitanium compound to form a second aqueous mixture comprising a pre-catalyst; and thermally treating the pre-catalyst to form the catalyst.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Max P. MCDANIEL, Eric D. SCHWERDTFEGER, Jeremy M. PRAETORIUS, Alan L. SOLENBERGER, Kathy S. CLEAR
  • Publication number: 20180088046
    Abstract: A method of monitoring a solid component of a reactor feed stream in a polymer production system, comprising (a) measuring a turbidity of the reactor feed stream, wherein the reactor feed stream comprises a solid component of a polymerization catalyst system, and (b) translating the turbidity of the reactor feed stream into a concentration of the solid component in the reactor feed stream. A method of monitoring a solid component of a reactor feed stream in a polymer production system, comprising (a) measuring a turbidity of a precontactor feed stream, wherein the precontactor feed stream comprises a solid component of a polymerization catalyst system, and (b) translating the turbidity of the precontactor feed stream into a concentration of the solid component in a precontactor effluent stream, wherein the precontactor effluent stream comprises the reactor feed stream.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 29, 2018
    Inventors: Eric D. Schwerdtfeger, Daniel G. Hert, Max P. McDaniel
  • Publication number: 20180057618
    Abstract: An ethylene alpha-olefin copolymer having (a) a density of from about 0.910 g/cc to about 0.940 g/cc; (b) a weight average molecular weight of from about 150,000 g/mol to about 300,000 g/mol; and (c) a melt index at a load of 2.16 kg of from about 0.01 dg/10 min. to about 0.5 dg/min.; wherein a 1 mil blown film formed from the polymer composition is characterized by (i) a Dart Impact strength greater than about 175 g/mil; (ii) an Elmendorf machine direction tear strength greater than about 20 g/mil; and (iii) an Elmendorf transverse direction tear strength greater than about 475 g/mil.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 1, 2018
    Inventors: Ashish M. SUKHADIA, Guylaine ST. JEAN, Qing YANG, Max P. MCDANIEL
  • Patent number: 9896405
    Abstract: Processes for producing an ?,?-unsaturated carboxylic acid, such as acrylic acid, or a salt thereof, using treated solid oxides are disclosed. The treated solid oxides can be calcined solid oxides, metal-treated solid oxides, or metal-treated chemically-modified solid oxides, illustrative examples of which can include sodium-treated alumina, calcium-treated alumina, zinc-treated alumina, sodium-treated sulfated alumina, sodium-treated fluorided silica-coated alumina, and similar materials.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: February 20, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Max P. McDaniel, Pasquale Iacono
  • Patent number: 9890093
    Abstract: Oligomerization processes include the steps of introducing a monomer containing a C3 to C30 olefin and a chemically-treated solid oxide into a reaction zone, and oligomerizing the monomer to form an oligomer product in the reaction zone. Fluorided silica-coated alumina and fluorided-chlorided silica-coated alumina are illustrative chemically-treated solid oxides that can be used in the oligomerization processes.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 13, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Uriah J. Kilgore, Max P. McDaniel, Brooke L. Small, Kenneth D. Hope, Eduardo J. Baralt
  • Patent number: 9879101
    Abstract: A polymer having a long chain branching content peaking at greater than about 20 long chain branches per million carbon atoms, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 8 long chain branches per million carbon atoms, a polydispersity index of greater than about 20 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 1 long chain branches per chain, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: January 30, 2018
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Youlu Yu, Eric D. Schwerdtfeger, Max P. McDaniel, Alan L. Solenberger, Kathy S. Clear
  • Patent number: 9840570
    Abstract: An ethylene alpha-olefin copolymer having (a) a density of from about 0.910 g/cc to about 0.940 g/cc; (b) a weight average molecular weight of from about 150,000 g/mol to about 300,000 g/mol; and (c) a melt index at a load of 2.16 kg of from about 0.01 dg/10 min. to about 0.5 dg/min.; wherein a 1 mil blown film formed from the polymer composition is characterized by (i) a Dart Impact strength greater than about 175 g/mil; (ii) an Elmendorf machine direction tear strength greater than about 20 g/mil; and (iii) an Elmendorf transverse direction tear strength greater than about 475 g/mil.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 12, 2017
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ashish M Sukhadia, Guylaine St. Jean, Qing Yang, Max P. McDaniel
  • Publication number: 20170349523
    Abstract: Processes for producing an ?,?-unsaturated carboxylic acid, such as acrylic acid, or a salt thereof, using solid promoters are disclosed. The solid promoters can be certain solid oxides, mixed oxides, and clays, illustrative examples of which can include alumina, zirconia, magnesia, magnesium aluminate, sepiolite, and similar materials.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Inventors: Mark L. Hlavinka, Max P. McDaniel
  • Publication number: 20170341045
    Abstract: The present invention discloses a continuous calcination vessel which can be used to prepare calcined chemically-treated solid oxides from solid oxides and chemically-treated solid oxides. A process for the continuous preparation of calcined chemically-treated solid oxides is also provided. Calcined chemically-treated solid oxides disclosed herein can be used in catalyst compositions for the polymerization of olefins.
    Type: Application
    Filed: August 15, 2017
    Publication date: November 30, 2017
    Inventors: Elizabeth A. Benham, Max P. McDaniel
  • Publication number: 20170341068
    Abstract: Disclosed herein are catalyst compositions containing a heteroatomic ligand transition metal compound complex, a chemically-treated solid oxide, and an organoaluminum compound. These catalyst compositions can be used in an ethylene oligomerization process to produce a liquid oligomer product containing hexene and octene, as well as a solid polymer product with a molecular weight sufficiently high to permit easy separation of the liquid oligomer product from the solid polymer product.
    Type: Application
    Filed: June 9, 2017
    Publication date: November 30, 2017
    Inventors: Uriah J. Kilgore, Steven R. Hutchison, Orson L. Sydora, Steven M. Bischof, Jared T. Fern, Max P. McDaniel
  • Patent number: 9796798
    Abstract: A method comprising a) calcining a silica support at temperature in the range of from about 100° C. to about 500° C. to form a precalcined silica support; b) contacting the precalcined silica support with a titanium alkoxide to form a titanated support; c) subsequent to b), contacting the titanated support with a polyol to form a polyol associated titanated support (PATS); d) contacting at least one of the silica support, pre-calcined silica support, the titanated support, the PATS, or combinations thereof with a chromium-containing compound to form a polymerization catalyst precursor; e) drying the polymerization catalyst precursor to form a dried polymerization catalyst precursor; and f) calcining the dried polymerization catalyst precursor to produce a polymerization catalyst, wherein less than about 0.1 wt. % of a highly reactive volatile organic compound (HRVOC) is emitted during the calcining of the dried polymerization catalyst precursor.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 24, 2017
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Jeremy M. Praetorius, Eric D. Schwerdtfeger, Max P. McDaniel, Ted H. Cymbaluk, Connor D. Boxell, Kathy S. Collins, Alan L. Solenberger
  • Patent number: 9783478
    Abstract: Processes for producing an ?,?-unsaturated carboxylic acid, such as acrylic acid, or a salt thereof, using solid promoters are disclosed. The solid promoters can be certain solid oxides, mixed oxides, and clays, illustrative examples of which can include alumina, zirconia, magnesia, magnesium aluminate, sepiolite, and similar materials.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: October 10, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Max P. McDaniel
  • Publication number: 20170283356
    Abstract: Processes for producing an ?,?-unsaturated carboxylic acid, such as acrylic acid, or a salt thereof, using treated solid oxides are disclosed. The treated solid oxides can be calcined solid oxides, metal-treated solid oxides, or metal-treated chemically-modified solid oxides, illustrative examples of which can include sodium-treated alumina, calcium-treated alumina, zinc-treated alumina, sodium-treated sulfated alumina, sodium-treated fluorided silica-coated alumina, and similar materials.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 5, 2017
    Inventors: Mark L. Hlavinka, Max P. McDaniel, Pasquale Iacono
  • Patent number: 9764297
    Abstract: The present invention discloses a continuous calcination vessel which can be used to prepare calcined chemically-treated solid oxides from solid oxides and chemically-treated solid oxides. A process for the continuous preparation of calcined chemically-treated solid oxides is also provided. Calcined chemically-treated solid oxides disclosed herein can be used in catalyst compositions for the polymerization of olefins.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: September 19, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel
  • Patent number: 9745230
    Abstract: Methods for making alpha olefin oligomers and polyalphaolefins include a step of contacting a C4 to C20 alpha olefin monomer and a catalyst system containing a metallocene, a first activator comprising a solid oxide chemically-treated with an electron withdrawing anion, and a second activator comprising an organoaluminum compound. The alpha olefin oligomers and polyalphaolefins prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: August 29, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Publication number: 20170233309
    Abstract: The present invention discloses processes for alkylating an aromatic compound, such as benzene or toluene, using a chemically-treated solid oxide. Suitable chemically-treated solid oxides include fluorided silica-coated alumina and fluorided-chlorided silica-coated alumina.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 17, 2017
    Inventors: Qing Yang, Max P. McDaniel, Uriah J. Kilgore, Mark L. Hlavinka
  • Publication number: 20170233510
    Abstract: Silica-coated alumina activator-supports, and catalyst compositions containing these activator-supports, are disclosed. Methods also are provided for preparing silica-coated alumina activator-supports, for preparing catalyst compositions, and for using the catalyst compositions to polymerize olefins.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 17, 2017
    Inventors: Max P. McDaniel, Qing Yang, Randy S. Muninger, Elizabeth A. Benham, Kathy S. Clear
  • Patent number: 9725393
    Abstract: Processes for producing an ?,?-unsaturated carboxylic acid, such as acrylic acid, or a salt thereof, using treated solid oxides are disclosed. The treated solid oxides can be calcined solid oxides, metal-treated solid oxides, or metal-treated chemically-modified solid oxides, illustrative examples of which can include sodium-treated alumina, calcium-treated alumina, zinc-treated alumina, sodium-treated sulfated alumina, sodium-treated fluorided silica-coated alumina, and similar materials.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: August 8, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Max P. McDaniel, Pasquale Iacono
  • Patent number: 9707549
    Abstract: Disclosed herein are catalyst compositions containing a heteroatomic ligand transition metal compound complex, a chemically-treated solid oxide, and an organoaluminum compound. These catalyst compositions can be used in an ethylene oligomerization process to produce a liquid oligomer product containing hexene and octene, as well as a solid polymer product with a molecular weight sufficiently high to permit easy separation of the liquid oligomer product from the solid polymer product.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 18, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Uriah J. Kilgore, Steven R. Hutchison, Orson L. Sydora, Steven M. Bischof, Jared T. Fern, Max P. McDaniel