Patents by Inventor Max P. McDaniels

Max P. McDaniels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091744
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20240084052
    Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain a bound alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.
    Type: Application
    Filed: October 24, 2023
    Publication date: March 14, 2024
    Inventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew T. Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
  • Patent number: 11920089
    Abstract: Pyrolysis processes comprise contacting a waste polyolefin with a solid catalyst at a pyrolysis temperature to form a pyrolysis product containing C1-C10 hydrocarbons. In some instances, the solid catalyst can be a silica-coated alumina, a fluorided silica-coated alumina, or a sulfated alumina, while in other instances, the solid catalyst can be any suitable solid oxide or chemically-treated solid oxide that is characterized by a d50 average particle size from 5 to 12 ?m and a particle size span from 0.7 to 1.7. Hydrocarbon compositions are formed from the pyrolysis of waste polyolefins with specific amounts of methane and higher carbon number hydrocarbons.
    Type: Grant
    Filed: May 11, 2023
    Date of Patent: March 5, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: David W. Dockter, Max P. McDaniel, Kathy S. Clear
  • Patent number: 11912809
    Abstract: Fluorided silica-coated alumina activator-supports have a bulk density from 0.15 to g/mL, a total pore volume from 0.85 to 2 mL/g, a BET surface area from 200 to 500 m2/g, an average pore diameter from 10 to 25 nm, and from 80 to 99% of pore volume in pores with diameters of greater than 6 nm. Methods of making the fluorided silica-coated alumina activator-supports and using the fluorided silica-coated aluminas in catalyst compositions and olefin polymerization processes also are described. Representative ethylene-based polymers produced using the compositions and processes have a melt index of 0.1 to 10 g/10 min and a density of 0.91 to 0.96 g/cm3, and contain from 70 to 270 ppm solid oxide and from 2 to 18 ppm fluorine.
    Type: Grant
    Filed: June 1, 2023
    Date of Patent: February 27, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Carlos A. Cruz, Jinping J. Zhou, Anand Ramanathan, Kathy S. Clear, Zhihui Gu
  • Publication number: 20240043360
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and either a supported chromium (VI) catalyst or a supported chromium (II) catalyst are contacted, optionally with UV-visible light irradiation, followed by exposure to an oxidizing atmosphere and then hydrolysis to form a reaction product containing the alcohol compound and/or the carbonyl compound. The presence of oxygen significant increases the amount of alcohol/carbonyl product formed, as well as the formation of oxygenated dimers and trimers of certain hydrocarbon reactants.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 8, 2024
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Kathy S. Clear
  • Publication number: 20240043577
    Abstract: Methods for preparing a metallocene-based catalyst composition that can impact the long chain branching of ethylene homopolymers and copolymers produced using the catalyst composition are described. The catalyst composition can be prepared by contacting a metallocene compound, a hydrocarbon solvent, and a first organoaluminum compound for a first period of time to form a metallocene solution, and then contacting the metallocene solution with an activator-support and a second organoaluminum compound for a second period of time to form the catalyst composition.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain
  • Publication number: 20240043578
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.1 wt. % to about 10 wt. % based upon the total weight of the silica support; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
  • Patent number: 11865528
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: July 17, 2023
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11865505
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius
  • Publication number: 20240001342
    Abstract: Methods for making a supported chromium catalyst are disclosed, and can comprise contacting a silica-coated alumina containing at least 30 wt. % silica with a chromium-containing compound in a liquid, drying, and calcining in an oxidizing atmosphere at a peak temperature of at least 650° C. to form the supported chromium catalyst. The supported chromium catalyst can contain from 0.01 to 20 wt. % chromium, and typically can have a pore volume from 0.5 to 2 mL/g and a BET surface area from 275 to 550 m2/g. The supported chromium catalyst subsequently can be used to polymerize olefins to produce, for example, ethylene-based homopolymers and copolymers having high molecular weights and broad molecular weight distributions.
    Type: Application
    Filed: August 15, 2023
    Publication date: January 4, 2024
    Inventors: Max P. McDaniel, Kathy S. Clear
  • Publication number: 20230416423
    Abstract: Methods for preparing metallocene-based catalyst compositions include the steps of contacting an alcohol compound and an organoaluminum compound for a first period of time to form a precontacted mixture, and contacting the precontacted mixture with an activator-support and a metallocene compound for a second period of time to form the catalyst composition. Such catalyst compositions can contain an activator-support, a metallocene compound, an organoaluminum compound, and a dialkyl aluminum alkoxide, and these catalyst compositions have increased catalytic activity for the polymerization of olefins.
    Type: Application
    Filed: July 24, 2023
    Publication date: December 28, 2023
    Inventors: Qing Yang, Ryan N. Rose, Max P. McDaniel, Zhihui Gu
  • Publication number: 20230415127
    Abstract: A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 28, 2023
    Inventors: Jeremy M. PRAETORIUS, Eric D. SCHWERDTFEGER, Max P. MCDANIEL, Ted H. CYMBALUK, Connor D. BOXELL, Alan L. SOLENBERGER, Kathy S. CLEAR
  • Publication number: 20230416169
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 28, 2023
    Inventors: Masud M. Monwar, Jared Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Publication number: 20230416419
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Patent number: 11845826
    Abstract: Methods for preparing a metallocene-based catalyst composition that can impact the long chain branching of ethylene homopolymers and copolymers produced using the catalyst composition are described. The catalyst composition can be prepared by contacting a metallocene compound, a hydrocarbon solvent, and a first organoaluminum compound for a first period of time to form a metallocene solution, and then contacting the metallocene solution with an activator-support and a second organoaluminum compound for a second period of time to form the catalyst composition.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain
  • Patent number: 11839870
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: December 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Publication number: 20230391897
    Abstract: Fluorided silica-coated alumina activator-supports have a bulk density from 0.15 to g/mL, a total pore volume from 0.85 to 2 mL/g, a BET surface area from 200 to 500 m2/g, an average pore diameter from 10 to 25 nm, and from 80 to 99% of pore volume in pores with diameters of greater than 6 nm. Methods of making the fluorided silica-coated alumina activator-supports and using the fluorided silica-coated aluminas in catalyst compositions and olefin polymerization processes also are described. Representative ethylene-based polymers produced using the compositions and processes have a melt index of 0.1 to 10 g/10 min and a density of 0.91 to 0.96 g/cm3, and contain from 70 to 270 ppm solid oxide and from 2 to 18 ppm fluorine.
    Type: Application
    Filed: June 1, 2023
    Publication date: December 7, 2023
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Carlos A. Cruz, Jinping J. Zhou, Anand Ramanathan, Kathy S. Clear, Zhihui Gu
  • Publication number: 20230391700
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 7, 2023
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
  • Publication number: 20230364595
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 16, 2023
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Publication number: 20230364598
    Abstract: Disclosed herein are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with an inorganic base to form an aqueous mixture having a pH of at least 4, followed by contacting a solid oxide with the aqueous mixture to produce the fluorided solid oxide. Also disclosed are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with a solid oxide to produce a mixture, followed by contacting the mixture with a inorganic base to produce the fluorided solid oxide at a pH of at least about 4. The fluorided solid oxide can be used as an activator component in a catalyst system for the polymerization of olefins.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 16, 2023
    Inventors: Max P. McDaniel, Kathy S. Clear, Qing Yang, Tony R. Crain