Patents by Inventor Max Rasmussen

Max Rasmussen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230379624
    Abstract: Aspects of the subject technology relate to electronic devices having speakers. An electronic device may include speaker control circuitry for a speaker. The speaker control circuitry may include multiple parallel prediction blocks that share a single look-ahead delay, and that feed, in parallel, a single controller. The single controller can generate a joint modification to an audio signal based on the parallel outputs of the prediction blocks. The joint modification can then be applied to the audio signal to generate a speaker-protection audio signal that can be output by the speaker. The speaker control circuitry may also include a system modeler that models the speaker system of the electronic device based on feedback measured physical characteristics. In this way, a reduced control safety margin can be achieved by more accurate model predictors, which can allow the controller to safely drive the speaker system to its full capability.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 23, 2023
    Inventors: Thomas M. JENSEN, Andrew P. BRIGHT, Ariel A. MASSIAS, Ethan R. DUNI, Hannes BREITSCHAEDEL, Max RASMUSSEN
  • Patent number: 11008564
    Abstract: Polynucleotide constructs that express an engineered foot-and-mouth disease (FMDV) P1 precursor protein and a non-FMDV TEV protease and methods for safe and efficient recombinant production of FMDV antigens and immunogens. Recombinant production of FMDV antigens avoids the need to culture highly-infectious FMDV, while conventional culture methods for producing FMDV antigens rely on the native FMDV 3C protease which exerts toxic effects on host cells. The inventors have developed a new system that efficiently and safely processes FMDV P1 precursor without the FMDV 3C protease, thus avoiding the toxic effects associated with use of the 3C protease. The invention is also directed to the FMDV antigens and virus-like particles produced by this system as well as to FMDV vaccines, diagnostics and other biologics.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: May 18, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Michael Puckette, Max Rasmussen
  • Patent number: 10604548
    Abstract: This application is directed generally to minicircle DNA vectors for the vaccination of foot-and-mouth disease (FMD). The transgene expression cassette in the minicircle DNA vector includes: a eukaryotic translation initiation nucleotide sequence, a mutant nucleotide sequence that encodes a foot-and-mouth disease virus (FMDV) capsid polyprotein precursor that contains at least one mutation to eliminate a restriction enzyme recognition site, a nucleotide sequence that encodes a protease that cleaves the MEW capsid polyprotein precursor into plurality of FMDV capsid proteins and a translational regulatory element to regulate the expression of the protease. The minicircle DNA vectors can be transfected directly into the cell of a mammalian host. When transfected into the mammalian host cell, virus-like particles can be produced intrinsically to stimulate the mammalian host's immune system to develop adaptive immunity toward foot-and-mouth disease.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: March 31, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Michael Puckette, Max Rasmussen, John Neilan
  • Patent number: 10513542
    Abstract: This application is directed generally to minicircle DNA vectors for the vaccination of foot-and-mouth disease (FMD). The transgene expression cassette in the minicircle DNA vector includes: a eukaryotic translation initiation nucleotide sequence, a mutant nucleotide sequence that encodes a foot-and-mouth disease virus (FMDV) capsid polyprotein precursor that contains at least one mutation to eliminate a restriction enzyme recognition site, a nucleotide sequence that encodes a protease that cleaves the FMDV capsid polyprotein precursor into a plurality of FMDV capsid proteins and a translational regulatory element to regulate the expression of the protease. The minicircle DNA vectors can be transfected directly into the cell of a mammalian host. When transfected into the mammalian host cell, virus-like particles can be produced intrinsically to stimulate the mammalian host's immune system to develop adaptive immunity toward foot-and-mouth disease.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 24, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Michael Puckette, Max Rasmussen, John Neilan
  • Publication number: 20190211321
    Abstract: Polynucleotide constructs that express an engineered foot-and-mouth disease (FMDV) P1 precursor protein and a non-FMDV TEV protease and methods for safe and efficient recombinant production of FMDV antigens and immunogens. Recombinant production of FMDV antigens avoids the need to culture highly-infectious FMDV, while conventional culture methods for producing FMDV antigens rely on the native FMDV 3C protease which exerts toxic effects on host cells. The inventors have developed a new system that efficiently and safely processes FMDV P1 precursor without the FMDV 3C protease, thus avoiding the toxic effects associated with use of the 3C protease. The invention is also directed to the FMDV antigens and virus-like particles produced by this system as well as to FMDV vaccines, diagnostics and other biologics.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 11, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Securit
    Inventors: Michael Puckette, Max Rasmussen
  • Patent number: 10308927
    Abstract: Polynucleotide constructs that express an engineered foot-and-mouth disease (FMDV) P1 precursor protein and a non-FMDV TEV protease and methods for safe and efficient recombinant production of FMDV antigens and immunogens. Recombinant production of FMDV antigens avoids the need to culture highly-infectious FMDV, while conventional culture methods for producing FMDV antigens rely on the native FMDV 3C protease which exerts toxic effects on host cells. The inventors have developed a new system that efficiently and safely processes FMDV P1 precursor without the FMDV 3C protease, thus avoiding the toxic effects associated with use of the 3C protease. The invention is also directed to the FMDV antigens and virus-like particles produced by this system as well as to FMDV vaccines, diagnostics and other biologics.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: June 4, 2019
    Assignee: The United States of America, as represented by the Secretary of Homeland Security
    Inventors: Michael Puckette, Max Rasmussen
  • Publication number: 20180244728
    Abstract: This application is directed generally to minicircle DNA vectors for the vaccination of foot-and-mouth disease (FMD). The transgene expression cassette in the minicircle DNA vector includes: a eukaryotic translation initiation nucleotide sequence, a mutant nucleotide sequence that encodes a foot-and-mouth disease virus (FMDV) capsid polyprotein precursor that contains at least one mutation to eliminate a restriction enzyme recognition site, a nucleotide sequence that encodes a protease that cleaves the FMDV capsid polyprotein precursor into a plurality of FMDV capsid proteins and a translational regulatory element to regulate the expression of the protease. The minicircle DNA vectors can be transfected directly into the cell of a mammalian host. When transfected into the mammalian host cell, virus-like particles can be produced intrinsically to stimulate the mammalian host's immune system to develop adaptive immunity toward foot-and-mouth disease.
    Type: Application
    Filed: April 19, 2018
    Publication date: August 30, 2018
    Applicant: The Government of the United States of America, as Represented by the Secretary, Department of
    Inventors: Michael Puckette, Max Rasmussen, John Neilan
  • Publication number: 20180200359
    Abstract: Polynucleotide constructs that express an engineered foot-and-mouth disease (FMDV) P1 precursor protein and a non-FMDV TEV protease and methods for safe and efficient recombinant production of FMDV antigens and immunogens. Recombinant production of FMDV antigens avoids the need to culture highly-infectious FMDV, while conventional culture methods for producing FMDV antigens rely on the native FMDV 3C protease which exerts toxic effects on host cells. The inventors have developed a new system that efficiently and safely processes FMDV P1 precursor without the FMDV 3C protease, thus avoiding the toxic effects associated with use of the 3C protease. The invention is also directed to the FMDV antigens and virus-like particles produced by this system as well as to FMDV vaccines, diagnostics and other biologics.
    Type: Application
    Filed: January 17, 2017
    Publication date: July 19, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Michael Puckette, Max Rasmussen
  • Patent number: 9975926
    Abstract: This application is directed generally to minicircle DNA vectors for the vaccination of foot-and-mouth disease (FMD). The transgene expression cassette in the minicircle DNA vector includes: a eukaryotic translation initiation nucleotide sequence, a mutant nucleotide sequence that encodes a foot-and-mouth disease virus (FMDV) capsid polyprotein precursor that contains at least one mutation to eliminate a restriction enzyme recognition site, a nucleotide sequence that encodes a protease that cleaves the FMDV capsid polyprotein precursor into a plurality of FMDV capsid proteins and a translational regulatory element to regulate the expression of the protease. The minicircle DNA vectors can be transfected directly into the cell of a mammalian host. When transfected into the mammalian host cell, virus-like particles can be produced intrinsically to stimulate the mammalian host's immune system to develop adaptive immunity toward foot-and-mouth disease.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: May 22, 2018
    Assignee: The United States of America, as represented by the Secretary of Homeland Security
    Inventors: Michael Puckette, Max Rasmussen, John Neilan
  • Publication number: 20170158739
    Abstract: This application is directed generally to minicircle DNA vectors for the vaccination of foot-and-mouth disease (FMD). The transgene expression cassette in the minicircle DNA vector includes: a eukaryotic translation initiation nucleotide sequence, a mutant nucleotide sequence that encodes a foot-and-mouth disease virus (FMDV) capsid polyprotein precursor that contains at least one mutation to eliminate a restriction enzyme recognition site, a nucleotide sequence that encodes a protease that cleaves the FMDV capsid polyprotein precursor into a plurality of FMDV capsid proteins and a translational regulatory element to regulate the expression of the protease. The minicircle DNA vectors can be transfected directly into the cell of a mammalian host. When transfected into the mammalian host cell, virus-like particles can be produced intrinsically to stimulate the mammalian host's immune system to develop adaptive immunity toward foot-and-mouth disease.
    Type: Application
    Filed: December 8, 2015
    Publication date: June 8, 2017
    Applicant: The Government of the United States of America, as Represented by the Secretary, Department of Homel
    Inventors: Michael Puckette, Max Rasmussen, John Neilan
  • Patent number: 6074755
    Abstract: A laminate is prepared that can be further treated comparatively soon after its preparation, the process comprising that a first solid film is applied with a fluid adhesive layer that cures influenced by a catalyst, whereupon a secondary solid or fluid film consisting totally or partially of plastic material, is brought into contact herewith, whereby the secondary film contains a catalyst for the curing of the adhesive. The laminate prepared is suitable as packaging material, e.g. for food.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: June 13, 2000
    Assignee: Curex APS
    Inventors: Max Otto Henri Rasmussen, Janne Rasmussen, Peter Max Rasmussen