Patents by Inventor Max SHULAKER
Max SHULAKER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240353369Abstract: A monolithic, three-dimensional (3D) integrated circuit (IC) device includes a sensing layer, a memory layer, and a processing layer. The sensing layer includes a plurality of carbon nanotube field-effect transistors (CNFETs) that are functionalized with at least 50 functional materials to generate data in response to exposure to a gas. The memory layer stores the data generated by the plurality of CNFETs, and the processing layer identifies one or more components of the gas based on the data generated by the plurality of CNFETs.Type: ApplicationFiled: May 13, 2024Publication date: October 24, 2024Applicant: Massachusetts Institute of TechnologyInventors: Max SHULAKER, Mindy Deanna Bishop
-
Patent number: 12013367Abstract: A monolithic, three-dimensional (3D) integrated circuit (IC) device includes a sensing layer, a memory layer, and a processing layer. The sensing layer includes a plurality of carbon nanotube field-effect transistors (CNFETs) that are functionalized with at least 50 functional materials to generate data in response to exposure to a gas. The memory layer stores the data generated by the plurality of CNFETs, and the processing layer identifies one or more components of the gas based on the data generated by the plurality of CNFETs.Type: GrantFiled: December 16, 2022Date of Patent: June 18, 2024Assignee: Massachusetts Institute of TechnologyInventors: Max Shulaker, Mindy Deanna Bishop
-
Patent number: 11832458Abstract: A carbon nanotube field effect transistor (CNFET), that has a channel formed of carbon nanotubes (CNTs), includes a layered deposit of a nonstoichiometric doping oxide (NDO), such as HfOX, where the concentration of the NDO varies through the thickness of the layer(s). An n-type metal-oxide semiconductor (NMOS) CNFET made in this manner can achieve similar ON-current, OFF-current, and/or threshold voltage magnitudes to a corresponding p-type metal-oxide semiconductor (PMOS) CNFET. Such an NMOS and PMOS can be used to achieve a symmetric complementary metal-oxide semiconductor (CMOS) CNFET design.Type: GrantFiled: March 24, 2021Date of Patent: November 28, 2023Assignee: Massachusetts Institute of TechnologyInventors: Christian Lau, Max Shulaker
-
Patent number: 11790141Abstract: System and methods to generate a circuit design for an integrated circuit using only allowable pairs of connected logic stages. The allowable pairs of connected logic stages are those pairs of connected logic stages with a static noise margin (SNM) above an SNM threshold. Also presented is a 16-bit microprocessor made entirely from carbon nanotube field effect transistors (CNFET) having such allowable pair of connected logic stages.Type: GrantFiled: June 2, 2021Date of Patent: October 17, 2023Assignee: Massachusetts Institute of TechnologyInventors: Gage Krieger Hills, Max Shulaker
-
Publication number: 20230232641Abstract: Described are concepts, systems, circuits, devices, structures and methods for depositing carbon nanotubes (CNTs) uniformly over a substrate. The described concepts, systems, circuits, devices, structures and methods meet at least several requirements; namely, the systems, circuits, devices, structures are: (1) manufacturable; (2) silicon-CMOS compatible; and (3) provide a path for realizing energy efficiency benefits utilizing silicon. In embodiments, described is an illustrative CNT solution-based deposition technique that addresses all of these requirements. Also described is a method for providing carbon nanotube field effect transistors (CNFETs) using uniform and reproducible fabrication techniques suitable for use across industry-standard wafers and which may use the same equipment currently being used to fabricate silicon product wafers. Also described are CNFETs fabricated within commercial silicon manufacturing facilities and having wafer-scale uniformity and reproducibility across multiple wafers.Type: ApplicationFiled: August 20, 2021Publication date: July 20, 2023Applicant: Massachusetts Institute of TechnologyInventors: Max SHULAKER, Mindy BISHOP
-
Publication number: 20230204536Abstract: A monolithic, three-dimensional (3D) integrated circuit (IC) device includes a sensing layer, a memory layer, and a processing layer. The sensing layer includes a plurality of carbon nanotube field-effect transistors (CNFETs) that are functionalized with at least 50 functional materials to generate data in response to exposure to a gas. The memory layer stores the data generated by the plurality of CNFETs, and the processing layer identifies one or more components of the gas based on the data generated by the plurality of CNFETs.Type: ApplicationFiled: December 16, 2022Publication date: June 29, 2023Applicant: Massachusetts Institute of TechnologyInventors: Max SHULAKER, Mindy Deanna Bishop
-
Patent number: 11626486Abstract: A back-gate carbon nanotube field effect transistor (CNFETs) provides: (1) reduced parasitic capacitance, which decreases the energy-delay product (EDP) thus improving the energy efficiency of digital systems (e.g., very-large-scale integrated circuits) and (2) scaling of transistors to smaller technology nodes (e.g., sub-3 nm nodes). An exemplary back-gate CNFET includes a channel. A source and a drain are disposed on a first side of the channel. A gate is disposed on a second side of the channel opposite to the first side. In this manner, the contacted gate pitch (CGP) of the back-gate CNFET may be scaled down without scaling the physical gate length (LG) or contact length (LC). The gate may also overlap with the source and/or the drain in this architecture. In one example, an exemplary CNFET was demonstrated to have a CGP less than 30 nm and 1.6× improvement to EDP compared to top-gate CNFETs.Type: GrantFiled: January 29, 2019Date of Patent: April 11, 2023Assignees: Massachusetts Institute of Technology, Analog Devices, Inc.Inventors: Max Shulaker, Tathagata Srimani, Samuel Fuller, Yosi Stein, Denis Murphy
-
Patent number: 11561195Abstract: A monolithic, three-dimensional (3D) integrated circuit (IC) device includes a sensing layer, a memory layer, and a processing layer. The sensing layer includes a plurality of carbon nanotube field-effect transistors (CNFETs) that are functionalized with at least 50 functional materials to generate data in response to exposure to a gas. The memory layer stores the data generated by the plurality of CNFETs, and the processing layer identifies one or more components of the gas based on the data generated by the plurality of CNFETs.Type: GrantFiled: June 7, 2019Date of Patent: January 24, 2023Assignee: Massachusetts Institute of TechnologyInventors: Max Shulaker, Mindy Deanna Bishop
-
Patent number: 11271160Abstract: A technology called RINSE (Removal of Incubated Nanotubes through Selective Exfoliation) is demonstrated. RINSE removes carbon nanotube (CNT) aggregates in CNFETs without compromising CNFET performance. In RINSE, CNTs are deposited on a substrate, coated with a thin adhesive layer, and sonicated. The adhesive layer is strong enough to keep the individual CNTs on the substrate, but not the larger CNT aggregates. When combined with a CNFET CMOS process as disclosed here, record CNFET CMOS yield and uniformity can be realized.Type: GrantFiled: May 14, 2021Date of Patent: March 8, 2022Assignee: Massachusetts Institute of TechnologyInventors: Christian Lau, Max Shulaker
-
Publication number: 20210351354Abstract: A technology called RINSE (Removal of Incubated Nanotubes through Selective Exfoliation) is demonstrated. RINSE removes carbon nanotube (CNT) aggregates in CNFETs without compromising CNFET performance. In RINSE, CNTs are deposited on a substrate, coated with a thin adhesive layer, and sonicated. The adhesive layer is strong enough to keep the individual CNTs on the substrate, but not the larger CNT aggregates. When combined with a CNFET CMOS process as disclosed here, record CNFET CMOS yield and uniformity can be realized.Type: ApplicationFiled: May 14, 2021Publication date: November 11, 2021Applicant: Massachusetts Institute of TechnologyInventors: Christian Lau, Max SHULAKER
-
Publication number: 20210313530Abstract: A carbon nanotube field effect transistor (CNFET), that has a channel formed of carbon nanotubes (CNTs), includes a layered deposit of a nonstoichiometric doping oxide (NDO), such as HfOX, where the concentration of the NDO varies through the thickness of the layer(s). An n-type metal-oxide semiconductor (NMOS) CNFET made in this manner can achieve similar ON-current, OFF-current, and/or threshold voltage magnitudes to a corresponding p-type metal-oxide semiconductor (PMOS) CNFET. Such an NMOS and PMOS can be used to achieve a symmetric complementary metal-oxide semiconductor (CMOS) CNFET design.Type: ApplicationFiled: March 24, 2021Publication date: October 7, 2021Inventors: Christian Lau, Max SHULAKER
-
Publication number: 20210294959Abstract: System and methods to generate a circuit design for an integrated circuit using only allowable pairs of connected logic stages. The allowable pairs of connected logic stages are those pairs of connected logic stages with a static noise margin (SNM) above an SNM threshold. Also presented is a 16-bit microprocessor made entirely from carbon nanotube field effect transistors (CNFET) having such allowable pair of connected logic stages.Type: ApplicationFiled: June 2, 2021Publication date: September 23, 2021Inventors: Gage Krieger HILLS, Max SHULAKER
-
Publication number: 20210247356Abstract: A monolithic, three-dimensional (3D) integrated circuit (IC) device includes a sensing layer, a memory layer, and a processing layer. The sensing layer includes a plurality of carbon nanotube field-effect transistors (CNFETs) that are functionalized with at least 50 functional materials to generate data in response to exposure to a gas. The memory layer stores the data generated by the plurality of CNFETs, and the processing layer identifies one or more components of the gas based on the data generated by the plurality of CNFETs.Type: ApplicationFiled: June 7, 2019Publication date: August 12, 2021Inventors: Max SHULAKER, Mindy Deanna Bishop
-
Patent number: 11062067Abstract: System and methods to generate a circuit design for an integrated circuit using only allowable pairs of connected logic stages. The allowable pairs of connected logic stages are those pairs of connected logic stages with a static noise margin (SNM) above an SNM threshold. Also presented is a 16-bit microprocessor made entirely from carbon nanotube field effect transistors (CNFET) having such allowable pair of connected logic stages.Type: GrantFiled: September 10, 2019Date of Patent: July 13, 2021Assignee: Massachusetts Institute of TechnologyInventors: Gage Krieger Hills, Max Shulaker
-
Publication number: 20210050417Abstract: A back-gate carbon nanotube field effect transistor (CNFETs) provides: (1) reduced parasitic capacitance, which decreases the energy-delay product (EDP) thus improving the energy efficiency of digital systems (e.g., very-large-scale integrated circuits) and (2) scaling of transistors to smaller technology nodes (e.g., sub-3 nm nodes). An exemplary back-gate CNFET includes a channel. A source and a drain are disposed on a first side of the channel. A gate is disposed on a second side of the channel opposite to the first side. In this manner, the contacted gate pitch (CGP) of the back-gate CNFET may be scaled down without scaling the physical gate length (LG) or contact length (LC). The gate may also overlap with the source and/or the drain in this architecture. In one example, an exemplary CNFET was demonstrated to have a CGP less than 30 nm and 1.6× improvement to EDP compared to top-gate CNFETs.Type: ApplicationFiled: January 29, 2019Publication date: February 18, 2021Applicant: Analog Devices, Inc.Inventors: Max SHULAKER, Tathagata SRIMANI, Samuel FULLER, Yosi STEIN, Denis MURPHY
-
Publication number: 20200082032Abstract: System and methods to generate a circuit design for an integrated circuit using only allowable pairs of connected logic stages. The allowable pairs of connected logic stages are those pairs of connected logic stages with a static noise margin (SNM) above an SNM threshold. Also presented is a 16-bit microprocessor made entirely from carbon nanotube field effect transistors (CNFET) having such allowable pair of connected logic stages.Type: ApplicationFiled: September 10, 2019Publication date: March 12, 2020Inventors: Gage Krieger HILLS, Max SHULAKER