Patents by Inventor Maxence Marcant

Maxence Marcant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8138962
    Abstract: The method processes measured vertical profiles of the power of the echoes returned following a transmission of radar signals, each measured vertical profile being a function of the sweep angle of the radar beam and associated with a given pointing angle/distance box pair of the radar beam. The method generates a synthetic vertical profile of the power of the echoes returned by the ground only, and includes, for each measured vertical profile: superposition of the synthetic vertical profile on the measured vertical profile in question, for various values of the sweep angle, calculation of the error that exists between the measured vertical profile and the synthetic vertical profile, for each sweep angle value in question, and an exclusion, from the measured vertical profile, of the values for which the calculated error is less than a given threshold, in order to generate a resultant vertical profile with no ground echoes.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: March 20, 2012
    Assignee: Thales
    Inventors: Nicolas Bon, Jean-Paul Artis, Alain Becker, Maxence Marcant
  • Patent number: 8094059
    Abstract: The present invention relates to a method for determining the angular aperture corresponding to the extent in a plane of an object seen by a radar antenna, the object being situated at a given distance from the radar antenna. Echoes are measured in directions ? p - ?? 2 ? ? and ? ? ? p + ?? 2 of the plane, where ?p is a variable angle corresponding to directions of the plane and ?? is a given angular aperture. The pairwise differences are calculated between the echo measurements taken in the directions ? p - ?? 2 ? ? and ? ? ? p + ?? 2 . The slope is determined at a value ?p of a function e of ?p interpolated between the calculated differences, the angular aperture which corresponds to the extent of the object at the given distance being deduced from the slope. The invention has an application in meteorological radar.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: January 10, 2012
    Assignee: Thales
    Inventors: Clementine Costes, Jean-Paul Artis, Maxence Marcant
  • Publication number: 20110057832
    Abstract: The present invention relates to a method for determining the angular aperture corresponding to the extent in a plane of an object seen by a radar antenna, the object being situated at a given distance from the radar antenna. Echoes are measured in directions ? p - ?? 2 ? ? and ? ? ? p + ?? 2 of the plane, where ?p is a variable angle corresponding to directions of the plane and ?? is a given angular aperture. The pairwise differences are calculated between the echo measurements taken in the directions ? p - ?? 2 ? ? and ? ? ? p + ?? 2 . The slope is determined at a value ?p of a function e of ?p interpolated between the calculated differences, the angular aperture which corresponds to the extent of the object at the given distance being deduced from the slope. The invention has an application in meteorological radar.
    Type: Application
    Filed: May 9, 2008
    Publication date: March 10, 2011
    Applicant: Thales
    Inventors: Clementine Costes, Jean-Paul Artis, Maxence Marcant
  • Publication number: 20100109942
    Abstract: The method processes measured vertical profiles of the power of the echoes returned following a transmission of radar signals, each measured vertical profile being a function of the sweep angle of the radar beam and associated with a given pointing angle/distance box pair of the radar beam. The method generates a synthetic vertical profile of the power of the echoes returned by the ground only, and includes, for each measured vertical profile: superposition of the synthetic vertical profile on the measured vertical profile in question, for various values of the sweep angle, calculation of the error that exists between the measured vertical profile and the synthetic vertical profile, for each sweep angle value in question, and an exclusion, from the measured vertical profile, of the values for which the calculated error is less than a given threshold, in order to generate a resultant vertical profile with no ground echoes.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 6, 2010
    Applicant: Thales
    Inventors: Nicolas Bon, Jean-Paul Artis, Alain Becker, Maxence Marcant
  • Patent number: 7358917
    Abstract: The invention relates to a frequency dispersive antenna. The antenna comprises at least one top part and one bottom part. The top part and the bottom part comprises radiating waveguides coupled electromagnetically by way of coupling slots to a feed waveguide. The feed waveguide of the top part of the antenna does not comprise any coupling slot over a length L. The length L is chosen so as to achieve an electric length substantially equal to the electric length of the feed guide coupled to the bottom part of the antenna. In particular, the invention applies to the pinpointing of meteorological phenomena over an angular domain greater than the natural width of an airborne antenna.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: April 15, 2008
    Assignee: Thales
    Inventors: Jean-Paul Artis, Gérard Debionne, Georges Guillaumot, Maxence Marcant
  • Patent number: 7289077
    Abstract: The invention relates to a frequency-dispersive antenna. The antenna comprises radiating waveguides on which are formed slots. The antenna comprises at least one feed waveguide linked by coupling slots to the radiating waveguides. The variation of the pointing direction of the beam from the antenna in at least one plane is obtained by varying the frequency of the wave guided by the feed waveguide. The length of the feed waveguide between the coupling slots of two adjacent radiating waveguides is greater than the distance separating the coupling slots of these two adjacent radiating waveguides. In particular, the invention applies to an airborne antenna suited to the detection and locating of meteorological phenomena.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 30, 2007
    Assignee: Thales
    Inventors: Jean-Paul Artis, Gérard Debionne, Georges Guillaumot, Maxence Marcant
  • Patent number: 7286093
    Abstract: The invention relates to a frequency dispersive antenna comprising radiating waveguides divided into three legs. The indirect angle between the first and second leg is greater than or equal to 90 degrees and less than 180 degrees, the direct angle between the second and third leg being greater than or equal to 90 degrees and less than 180 degrees. The antenna comprises a feed waveguide comprising a stack of elements divided into three adjacent legs, the direct angle between the first and second leg being greater than or equal to 90 degrees and less than 180 degrees, the indirect angle between the second and third leg being greater than or equal to 90 degrees and less than 180 degrees. In particular, the invention applies to an airborne antenna suitable for the detection and for the pinpointing of meteorological phenomena.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 23, 2007
    Assignee: Thales
    Inventors: Jean-Paul Artis, Gérard Debionne, Georges Guillaumot, Maxence Marcant
  • Publication number: 20070069967
    Abstract: The invention relates to a frequency-dispersive antenna. The antenna comprises radiating waveguides on which are formed slots. The antenna comprises at least one feed waveguide linked by coupling slots to the radiating waveguides. The variation of the pointing direction of the beam from the antenna in at least one plane is obtained by varying the frequency of the wave guided by the feed waveguide. The length of the feed waveguide between the coupling slots of two adjacent radiating waveguides is greater than the distance separating the coupling slots of these two adjacent radiating waveguides. In particular, the invention applies to an airborne antenna suited to the detection and locating of meteorological phenomena.
    Type: Application
    Filed: June 2, 2006
    Publication date: March 29, 2007
    Inventors: Jean-Paul Artis, Gerard Debionne, Georges Guillaumot, Maxence Marcant
  • Publication number: 20070030209
    Abstract: The invention relates to a frequency dispersive antenna. The antenna comprises at least one top part and one bottom part. The top part and the bottom part comprises radiating waveguides coupled electromagnetically by way of coupling slots to a feed waveguide. The feed waveguide of the top part of the antenna does not comprise any coupling slot over a length L. The length L is chosen so as to achieve an electric length substantially equal to the electric length of the feed guide coupled to the bottom part of the antenna. In particular, the invention applies to the pinpointing of meteorological phenomena over an angular domain greater than the natural width of an airborne antenna.
    Type: Application
    Filed: June 2, 2006
    Publication date: February 8, 2007
    Inventors: Jean-Paul Artis, Gerard Debionne, Georges Guillaumot, Maxence Marcant
  • Publication number: 20070013598
    Abstract: The invention relates to a frequency dispersive antenna comprising radiating waveguides divided into three legs. The indirect angle between the first and the second leg is greater than or equal to 90 degrees and less than 180 degrees, the direct angle between the second and third leg being greater than or equal to 90 degrees and less than 180 degrees. The antenna comprises a feed waveguide comprising a stack of elements divided into three adjacent legs, the direct angle between the first and the second leg being greater than or equal to 90 degrees and less than 180 degrees, the indirect angle between the second and the third leg being greater than or equal to 90 degrees and less than 180 degrees. In particular, the invention applies to an airborne antenna suitable for the detection and for the pinpointing of meteorological phenomena.
    Type: Application
    Filed: June 2, 2006
    Publication date: January 18, 2007
    Inventors: Jean-Paul Artis, Gerard Debionne, Georges Guillaumot, Maxence Marcant