Patents by Inventor Maxim Liberman

Maxim Liberman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210191198
    Abstract: LCDs (liquid crystal displays) with improved efficiency and performance, as well as corresponding methods are disclosed. Color conversion films and elements with rhodamine-based fluorescent compounds and/or assistant dyes are used to modify the spectrum of the illumination provided by the backlight unit in either or both the backlight unit itself and the LCD panel, in various configurations. Color conversion may be performed above the LC module, possibly by a patterned layer incorporating the color filters, and/or within the backlight unit within a fluorescence-intensifying section in which radiation is recycled to enhance color conversion. Film configuration, positions and optionally supportive structures are provided, to extend the lifetime of the fluorescent compounds. Collimation of backlight illumination may further enhance the optical performance of disclosed LCDs.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Applicant: MolecuLED Ltd.
    Inventors: Sanaa MUSA, Rony SCHWARZ, Eran SELLA, Daniel SZWARCMAN, Maxim LIBERMAN, Evgenia Liel (Jeny) KUKS, Ziv SOBOL, Daniel ARONOV, Mor Shmuel ARMON, Elad Cohen
  • Patent number: 10879726
    Abstract: The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: December 29, 2020
    Assignee: STOREDOT LTD.
    Inventors: Daniel Aronov, Leonid Krasovitsky, Maxim Liberman, Vadim Sabayev, Leonid Spindler, Alan Weisleder
  • Patent number: 10608463
    Abstract: Charging methods and systems are provided which charge multiple cells directly from an AC source, by adjusting, momentarily, the number of charged cells to the momentary voltage level provided by the AC source. Cells are rapidly switched in and out to correspond to the provided voltage level, and the charging level of each cell is regulated by the switching order of the cells—determined according to cell characteristics such as state of charge and state of health. Advantageously, charging losses are reduced significantly in the disclosed systems and methods, and an additional level of cell control is provided. The charged assembly of cells may be arranged and re-arranged in various configurations to optimize the charging scheme, e.g., to equalize the charging states of the cells to simplify the use and improve the efficiency of the cell stack.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: March 31, 2020
    Assignee: Storedot Ltd.
    Inventors: Daniel Aronov, Avraham Edelshtein, Maxim Liberman
  • Publication number: 20190165592
    Abstract: The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Applicant: StoreDot Ltd.
    Inventors: Daniel ARONOV, Leonid KRASOVITSKY, Maxim LIBERMAN, Vadim SABAYEV, Leonid SPINDLER, Alan WEISLEDER
  • Patent number: 10256650
    Abstract: The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: April 9, 2019
    Assignee: STOREDOT LTD.
    Inventors: Daniel Aronov, Leonid Krasovitsky, Maxim Liberman, Vadim Sabayev, Leonid Spindler, Alan Weisleder
  • Publication number: 20180246371
    Abstract: LCDs (liquid crystal displays) with improved efficiency and performance, as well as corresponding methods are disclosed. Color conversion films and elements with rhodamine-based fluorescent compounds and/or assistant dyes are used to modify the spectrum of the illumination provided by the backlight unit in either or both the backlight unit itself and the LCD panel, in various configurations. Color conversion may be performed above the LC module, possibly by a patterned layer incorporating the color filters, and/or within the backlight unit within a fluorescence-intensifying section in which radiation is recycled to enhance color conversion. Film configuration, positions and optionally supportive structures are provided, to extend the lifetime of the fluorescent compounds. Collimation of backlight illumination may further enhance the optical performance of disclosed LCDs.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 30, 2018
    Applicant: StoreDot Ltd.
    Inventors: Daniel SZWARCMAN, Maxim LIBERMAN, Evgenia Liel (Jeny) KUKS, Rony SCHWARZ, Ziv SOBOL, Daniel ARONOV, Mor Shmuel ARMON, Elad Cohen, Eran SELLA
  • Publication number: 20160241070
    Abstract: The present invention discloses integrated power-management units in energy-storage devices for fast-charging of rechargeable devices. Energy-storage devices include: an energy-storage component for providing power to a rechargeable device; and an integral power-management unit (PMU), integrally connected to the energy-storage component, for transforming a high-power input, having an input voltage and a low input RMS current, into a high-power output, having an output voltage and a high output RMS current, wherein the high-power input is equal to the high-power output, and wherein the high-power output is configured to charge the energy-storage component.
    Type: Application
    Filed: February 16, 2015
    Publication date: August 18, 2016
    Inventors: Daniel Aronov, Leonid Krasovitsky, Maxim Liberman, Vadim Sabayev, Leonid Spindler
  • Publication number: 20160181844
    Abstract: The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Daniel Aronov, Leonid Krasovitsky, Maxim Liberman, Vadim Sabayev, Leonid Spindler, Alan Weisleder
  • Patent number: 9325201
    Abstract: The present invention discloses charging devices for charging energy-storage devices. Charging devices include: an Electro-Magnetic Interference/Radio-Frequency Interference (EMI/RFI) filter for passively suppressing conducted interference present on an alternating-current (AC) power source; optionally, a transformer for transforming power from the AC power source without changing frequency; a rectifier for converting an AC input to a direct-current (DC) output; and a voltage-controlled charger for providing a high-power output having an output voltage and an output current from the AC power source, wherein the output voltage and the output current from the voltage-controlled charger are pulsating DC signals. Preferably, the high-power output has a power-factor value of: greater than about 0.70, greater than about 0.80, greater than about 0.90, greater than about 0.95, or greater than about 0.97.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: April 26, 2016
    Assignee: StoreDot, Ltd.
    Inventors: Daniel Aronov, Maxim Liberman, Leonid Spindler
  • Patent number: 9252606
    Abstract: The present invention discloses devices, for adaptive fast-charging of mobile devices, including: a charge-delivering device for providing electrical power to a charge-receiving device; and at least one electrical-contact pin for enabling electrical current to be transmitted at an amperage greater than about 5 A to the charge-receiving device. Preferably, the charge-receiving device is selected from the group consisting of: an integral power-source component of a mobile device and a slave battery. Preferably, at least one electrical-contact pin is further configured to transmit the electrical current at an amperage selected from the group consisting of: greater than about 10 A, greater than about 20 A, greater than about 30 A, and greater than about 60 A. Preferably, at least one electrical-contact pin is spring-loaded. Preferably, at least one electrical-contact pin includes protection circuitry for protecting against thermal overloads and short circuits.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 2, 2016
    Assignee: StoreDot Ltd.
    Inventors: Daniel Aronov, Leonid Krasovitsky, Maxim Liberman, Vadim Sabayev, Leonid Spindler
  • Patent number: 8633828
    Abstract: A system and method for safing vehicle sensors includes two safety systems, each with a primary sensor for monitoring vehicle motion and activating its corresponding safety system in response to certain vehicle motions. Each sensor may act as a safing sensor for the other in the event that activation of a safety system is indicated by the primary sensor. Each sensor may also monitor the other prior to such an event, to detect a sensor malfunction before that sensor is needed to active a safety system.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: January 21, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Maxim Liberman
  • Publication number: 20110187546
    Abstract: A system and method for safing vehicle sensors includes two safety systems, each with a primary sensor for monitoring vehicle motion and activating its corresponding safety system in response to certain vehicle motions. Each sensor may act as a safing sensor for the other in the event that activation of a safety system is indicated by the primary sensor. Each sensor may also monitor the other prior to such an event, to detect a sensor malfunction before that sensor is needed to active a safety system.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 4, 2011
    Applicant: Analog Devices, Inc.
    Inventor: Maxim Liberman