Patents by Inventor Maxim Lisachenko

Maxim Lisachenko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9117798
    Abstract: A thin film transistor, a method of fabricating the same, and an organic light emitting diode (OLED) display device including the same. The thin film transistor includes a substrate; a semiconductor layer disposed on the substrate and including a channel region; source/drain regions including ions and an offset region; a gate insulating layer disposed on the semiconductor layer; a gate electrode disposed on the gate insulating layer; a first insulating layer disposed on the gate electrode; a second insulating layer disposed on the first insulating layer; and source/drain electrodes disposed on the second insulating layer, and electrically connected to the source/drain regions of the semiconductor layer, respectively. The sum of thicknesses of the gate insulating layer and the first insulating layer that are on the source/drain regions is less than the vertical dispersion depth of the ions included in the source/drain regions.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 25, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Ki-Yong Lee, Hyun-Gue Kim, Maxim Lisachenko, Dong-Hyun Lee, Kil-Won Lee, Jong-Ryuk Park, Bo-Kyung Choi
  • Patent number: 9035311
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Soo-Beom Jo, Dong-Hyun Lee, Kil-Won Lee, Maxim Lisachenko, Yun-Mo Chung, Bo-Kyung Choi, Jong-Ryuk Park, Ki-Yong Lee
  • Publication number: 20140363936
    Abstract: A thin film transistor (TFT) and an organic light emitting diode (OLED) display device. The TFT and the OLED display device include a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate electrode insulated from the semiconductor layer, a gate insulating layer insulating the semiconductor layer from the gate electrode, and source and drain electrodes insulated from the gate electrode and partially connected to the semiconductor layer, wherein the semiconductor layer is formed from a polycrystalline silicon layer crystallized by a metal catalyst and the metal catalyst is removed by gettering using an etchant. In addition, the OLED display device includes an insulating layer disposed on the entire surface of the substrate, a first electrode disposed on the insulating layer and electrically connected to one of the source and drain electrodes, an organic layer, and a second electrode.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 11, 2014
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Ki-Yong Lee, Maxim Lisachenko, Bo-Kyung Choi, Dae-Woo Lee, Kil-Won Lee, Dong-Hyun Lee, Jong-Ryuk Park, Ji-Su Ahn, Young-Dae Kim, Heung-Yeol Na, Min-Jae Jeong, Yun-Mo Chung, Jong-Won Hong, Eu-Gene Kang, Seok-RaK Chang, Jae-Wan Jung, Sang-Yon Yoon
  • Patent number: 8890165
    Abstract: A method of forming a polycrystalline silicon layer, a thin film transistor (TFT), an organic light emitting diode (OLED) display device having the same, and methods of fabricating the same. The method of forming a polycrystalline silicon layer includes providing a substrate, forming a buffer layer on the substrate, forming an amorphous silicon layer on the buffer layer, forming a groove in the amorphous silicon layer, forming a capping layer on the amorphous silicon layer, forming a metal catalyst layer on the capping layer, and annealing the substrate and crystallizing the amorphous silicon layer into a polycrystalline silicon layer.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dong-Hyun Lee, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Maxim Lisachenko, Byoung-Keon Park, Kil-Won Lee, Jae-Wan Jung
  • Patent number: 8546248
    Abstract: A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 1, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yun-Mo Chung, Ki-Yong Lee, Min-Jae Jeong, Jin-Wook Seo, Jong-Won Hong, Heung-Yeol Na, Eu-Gene Kang, Seok-Rak Chang, Tae-Hoon Yang, Ji-Su Ahn, Young-Dae Kim, Byoung-Keon Park, Kil-Won Lee, Dong-Hyun Lee, Sang-Yon Yoon, Jong-Ryuk Park, Bo-Kyung Choi, Maxim Lisachenko
  • Publication number: 20130228760
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 5, 2013
    Applicant: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon PARK, Tae-Hoon YANG, Jin-Wook SEO, Soo-Beom JO, Dong-Hyun LEE, Kil-Won LEE, Maxim LISACHENKO, Yun-Mo CHUNG, Bo-Kyung CHOI, Jong-Ryuk PARK, Ki-Yong LEE
  • Patent number: 8507914
    Abstract: A thin film transistor, a method of fabricating the thin film transistor, and an organic light emitting diode (OLED) display device equipped with the thin film transistor of which the thin film transistor includes a substrate, a buffer layer disposed on the substrate, a first semiconductor layer and a second semiconductor layer disposed on the buffer layer, a gate electrode insulated from the first semiconductor layer and the second semiconductor layer, a gate insulating layer insulating the gate electrode from the first semiconductor layer and the second semiconductor layer, and source and drain electrodes insulated from the gate electrode and partially connected to the second semiconductor layer, wherein the second semiconductor layer is disposed on the first semiconductor layer.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: August 13, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dong-Hyun Lee, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Maxim Lisachenko, Byoung-Keon Park, Kil-Won Lee, Jae-Wan Jung
  • Patent number: 8409887
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 2, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Soo-Beom Jo, Dong-Hyun Lee, Kil-Won Lee, Maxim Lisachenko, Yun-Mo Chung, Bo-Kyung Choi, Jong-Ryuk Park, Ki-Yong Lee
  • Patent number: 8294158
    Abstract: A thin film transistor (TFT) includes a substrate, a semiconductor layer disposed on the substrate and including source and drain regions, each having a first metal catalyst crystallization region and a second metal catalyst crystallization region, and a channel region having the second metal catalyst crystallization region, a gate electrode disposed in a position corresponding to the channel region of the semiconductor layer, a gate insulating layer interposed between the semiconductor layer and the gate electrode to electrically insulate the semiconductor layer from the gate electrode, and source and drain electrodes electrically insulated from the gate electrode and electrically connected to the source and drain regions, respectively. An OLED display device includes the thin film transistor and a first electrode, an organic layer, and a second electrode electrically connected to the source and drain electrodes.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 23, 2012
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Jin-Wook Seo, Tae-Hoon Yang, Kil-Won Lee, Dong-Hyun Lee, Maxim Lisachenko, Ki-Yong Lee
  • Patent number: 8278716
    Abstract: A thin film transistor, a method of fabricating the thin film transistor, and an organic light emitting diode (OLED) display device including the thin film transistor, the thin film transistor including: a substrate; a buffer layer formed on the substrate; a first semiconductor layer disposed on the buffer layer; a second semiconductor layer disposed on the first semiconductor layer, which is larger than the first semiconductor layer; a gate electrode insulated from the first semiconductor layer and the second semiconductor layer; a gate insulating layer to insulate the gate electrode from the first semiconductor layer and the second semiconductor layer; source and drain electrodes insulated from the gate electrode and connected to the second semiconductor layer; an insulating layer disposed on the source and drain electrodes, and an organic light emitting diode connected to one of the source and drain electrodes.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 2, 2012
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Dong-Hyun Lee, Kil-Won Lee, Tae-Hoon Yang, Jin-Wook Seo, Ki-Yong Lee, Ji-Su Ahn, Maxim Lisachenko
  • Patent number: 8247316
    Abstract: A transistor includes a substrate, an active region including a source region, a channel region, and a drain region which are crystallized using an SGS crystallization method and are formed on the substrate so that a grain size of a first annealed portion and a second annealed portion are different from each other, a gate insulating layer formed on the active region, and a gate electrode formed on the gate insulating layer.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: August 21, 2012
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Byoungkeon Park, Taehoon Yang, Jinwook Seo, Seihwan Jung, Kiyong Lee, Maxim Lisachenko
  • Patent number: 8048783
    Abstract: A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 1, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Yun-Mo Chung, Ki-Yong Lee, Min-Jae Jeong, Jin-Wook Seo, Jong-Won Hong, Heung-Yeol Na, Eu-Gene Kang, Seok-Rak Chang, Tae-Hoon Yang, Ji-Su Ahn, Young-Dae Kim, Byoung-Keon Park, Kil-Won Lee, Dong-Hyun Lee, Sang-Yon Yoon, Jong-Ryuk Park, Bo-Kyung Choi, Maxim Lisachenko
  • Publication number: 20110263107
    Abstract: A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer.
    Type: Application
    Filed: July 7, 2011
    Publication date: October 27, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Yun-Mo CHUNG, Ki-Yong LEE, Min-Jae JEONG, Jin-Wook SEO, Jong-Won HONG, Heung-Yeol NA, Eu-Gene KANG, Seok-Rak CHANG, Tae-Hoon YANG, Ji-Su AHN, Young-Dae KIM, Byoung-Keon PARK, Kil-Won LEE, Dong-Hyun LEE, Sang-Yon YOON, Jong-Ryuk PARK, Bo-Kyung CHOI, Maxim LISACHENKO
  • Publication number: 20110114961
    Abstract: A method of forming a polycrystalline silicon layer, a thin film transistor (TFT), an organic light emitting diode (OLED) display device having the same, and methods of fabricating the same. The method of forming a polycrystalline silicon layer includes providing a substrate, forming a buffer layer on the substrate, forming an amorphous silicon layer on the buffer layer, forming a groove in the amorphous silicon layer, forming a capping layer on the amorphous silicon layer, forming a metal catalyst layer on the capping layer, and annealing the substrate and crystallizing the amorphous silicon layer into a polycrystalline silicon layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: May 19, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Dong-Hyun LEE, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Maxim Lisachenko, Byoung-Keon Park, Kil-Won Lee, Jae-Wan Jung
  • Publication number: 20100244036
    Abstract: A thin film transistor, a method of fabricating the same, and an organic light emitting diode (OLED) display device including the same. The thin film transistor includes a substrate; a semiconductor layer disposed on the substrate and including a channel region; source/drain regions including ions and an offset region; a gate insulating layer disposed on the semiconductor layer; a gate electrode disposed on the gate insulating layer; a first insulating layer disposed on the gate electrode; a second insulating layer disposed on the first insulating layer; and source/drain electrodes disposed on the second insulating layer, and electrically connected to the source/drain regions of the semiconductor layer, respectively. The sum of thicknesses of the gate insulating layer and the first insulating layer that are on the source/drain regions is less than the vertical dispersion depth of the ions included in the source/drain regions.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 30, 2010
    Applicant: Samsung Mobile Display Co., Ltd
    Inventors: Byoung-Keon PARK, Tae-Hoon Yang, Jin-Wook Seo, Ki-Yong Lee, Hyun-Gue Kim, Maxim Lisachenko, Dong-Hyun Lee, Kil-Won Lee, Jong-Ryuk Park, Bo-Kyung Choi
  • Publication number: 20100227443
    Abstract: A method of forming a polycrystalline silicon layer includes forming an amorphous silicon layer on a substrate by chemical vapor deposition using a gas including a silicon atom and hydrogen gas, and crystallizing the amorphous silicon layer into a polycrystalline silicon layer using a crystallization-inducing metal. The resultant polycrystalline silicon layer has an improved charge mobility.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Kil-Won LEE, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Byoung-Keon Park, Maxim Lisachenko, Ji-Su Ahn, Young-Dae Kim, Sang-Yon Yoon, Jong-Ryuk Park, Bo-Kyung Choi, Yun-Mo Chung, Min-Jae Jeong, Jong-Won Hong, Heung-Yeol Na, Eu-Gene Kang, Seok-Rak Chang
  • Publication number: 20100227458
    Abstract: A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Inventors: Yun-Mo CHUNG, Ki-Yong Lee, Min-Jae Jeong, Jin-Wook Seo, Jong-Won Hong, Heung-Yeol Na, Eu-Gene Kang, Seok-Rak Chang, Tae-Hoon Yang, Ji-Su Ahn, Young-Dae Kim, Byoung-Keon Park, Kil-Won Lee, Dong-Hyun Lee, Sang-Yon Yoon, Jong-Ryuk Park, Bo-Kyung Choi, Maxim Lisachenko
  • Publication number: 20100224883
    Abstract: A thin film transistor (TFT) and an organic light emitting diode (OLED) display device. The TFT and the OLED display device include a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate electrode insulated from the semiconductor layer, a gate insulating layer insulating the semiconductor layer from the gate electrode, and source and drain electrodes insulated from the gate electrode and partially connected to the semiconductor layer, wherein the semiconductor layer is formed from a polycrystalline silicon layer crystallized by a metal catalyst and the metal catalyst is removed by gettering using an etchant. In addition, the OLED display device includes an insulating layer disposed on the entire surface of the substrate, a first electrode disposed on the insulating layer and electrically connected to one of the source and drain electrodes, an organic layer, and a second electrode.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Byoung-Keon PARK, Tae-Hoo Yang, Jin-Wook Seo, Ki-Yong Lee, Maxim Lisachenko, Bo-Kyung Choi, Dae-Woo Lee, Kil-Won Lee, Dong-Hyun Lee, Jong-Ryuk Park, Ji-Su Ahn, Yong-Dae Kim, Heung-Yeol Na, Min-Jae Jeong, Yun-Mo Chung, Jong-Won Hong, Eu-Gene Kang, Seok-Rak Chang, Jae-Wan Jung, Sang-Yon Yoon
  • Publication number: 20100224882
    Abstract: A thin film transistor, a method of fabricating the same, and an organic light emitting diode display device having the same, the thin film transistor including: a substrate; a silicon layer formed on the substrate; a diffusion layer formed on the silicon layer; a semiconductor layer that is crystallized using a metal catalyst, formed on the diffusion layer; a gate electrode disposed on the diffusion layer, facing a channel region of the semiconductor layer; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and source and drain electrodes electrically connected to source and drain regions of the semiconductor layer.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 9, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Dong-Hyun LEE, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Byoung-Keon Park, Kil-Won Lee, Maxim Lisachenko, Jae-Wan Jung
  • Publication number: 20100224881
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Soo-Beom Jo, Dong-Hyun Lee, Kil-Won Lee, Maxim Lisachenko, Yun-Mo Chung, Bo-Kyung Choi, Jong-Ryuk Park, Ki-Yong Lee