Patents by Inventor Maximilian Schmidt

Maximilian Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11999017
    Abstract: The invention relates to a method for conducting and monitoring a machining process of a workpiece (10), in particular a welding process for joining the workpiece (10) to a further workpiece (10), by means of a high-energy machining beam (14), wherein the method comprises the following steps: generating a high-energy machining beam (14); projecting and/or focusing the machining beam (14) onto the workpiece (10), wherein, in accordance with a machining control signal, different machining regions of the workpiece (10) are machined; generating a measurement beam (16) by means of an optical coherence tomograph (18), wherein the measurement beam (16) is able to be coupled into the machining beam (14); determining measurement points (20) during the machining process by means of the optical coherence tomograph (18) using the measurement beam (16), in accordance with a measurement control signal; obtaining at least one external signal which is based on a measured variable and which is independent of a processing of t
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: June 4, 2024
    Assignee: Lessmüller Lasertechnik GmbH
    Inventors: Eckhard Lessmueller, Christian Truckenbrodt, Maximilian Schmidt
  • Patent number: 11977478
    Abstract: A computer-implemented method for static testing a software system that is decomposed into software units connected by interfaces. The method comprises receiving context information for an interface, which includes at least one postcondition for the at least one output variable of a respective first software unit and/or a precondition for the input variable of a respective second software unit; receiving a selection of a third software unit in so that a substitute decomposition appertaining thereto of the software system into the third software unit and a complement of the third software unit is produced, the third software unit and the complement forming the software system and being connected via a substitute interface; selecting, based on the item of context information a postcondition per output variable of the complement; and testing whether the selected postcondition can be forward-propagated by the third software unit with regard to a formal verification.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: May 7, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Andrea Flexeder, Bernard Schmidt, Jochen Quante, Maximilian Schlund
  • Patent number: 11945919
    Abstract: The invention concerns a method for producing a population of particles of a polymer, wherein the polymer is polyvinylidene difluoride (=PVDF) or a copolymer comprising polyvinylidene difluoride, wherein the polymer is dissolved in an organic solvent, wherein molecules of the solvent comprise or consist of 3 to 22 carbon atoms, one or more oxygen atom(s) as heteroatom(s) and at most one carbocyclic or heterocyclic residue comprising carbon atoms which carbocyclic or heterocyclic residue is an aromatic residue, wherein the carbon atoms in the carbocyclic or heterocyclic residue are carbon atoms taken from said 3 to 22 carbon atoms, wherein the one or more oxygen atom(s) is/are part of at least one carboxylic acid ester group or carbonyl group, wherein the carbon atom in the carboxylic acid ester group and the carbonyl group is one of said 3 to 22 carbon atoms or/and at least one ether group and at most three hydroxyl groups, wherein in case of presence of at least one hydroxyl group the number of ether groups
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: April 2, 2024
    Assignee: Evonik Operations GmbH
    Inventors: Maximilian Alexander Dechet, Stephanie Kloos, Jochen Schmidt, Wolfgang Peukert
  • Patent number: 11939436
    Abstract: The invention concerns a method for producing a population of particles of a polymer, wherein the polymer is poly-butylene terephthalate (=PBT) or polyethylene terephthalate (=PET) or a copolymer comprising polybutylene terephthalate and/or polyethylene terephthalate, wherein the polymer is dissolved in an organic solvent which solvent is selected such that it completely solubilizes the polymer only at a temperature of the solvent above 100° C., wherein the method comprises heating the solvent and the solid polymer immersed in the solvent at least to a first temperature, at which first temperature the polymer completely dissolves, cooling the solution until a second temperature is reached at which second temperature clouding of the solution starts, further cooling the solution at a rate in a range of 0.05 ° C./min to 5° C./min or keeping the solution at the second temperature or at a temperature up to 3° C.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 26, 2024
    Assignee: Evonik Operations GmbH
    Inventors: Maximilian Alexander Dechet, Stephanie Kloos, Jochen Schmidt, Wolfgang Peukert
  • Patent number: 11834017
    Abstract: A control device and a method controlling an emergency braking pressure of a vehicle, and a vehicle having a control device of this kind, wherein a pilot control pressure (VSDI) is modulated with a pressure modulator as a function of a load condition of the vehicle, a deceleration, a speed and/or a coefficient of friction, and a safety pilot control pressure (SVSD) is controlled with an adjusting device, and wherein in normal operation, a supply pressure is controlled only by the VSDI while, in the event of a system malfunction, the supply pressure is controlled only by the SVSD, wherein it is ensured that the emergency braking pressure does not exceed a nominal pressure in the event of the system malfunction.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: December 5, 2023
    Inventors: Sebastian Louca, Oliver Riediger, Nigel Anstey, Maximilian Schmidt
  • Publication number: 20230219549
    Abstract: A control device and a method controlling an emergency braking pressure of a vehicle, and a vehicle having a control device of this kind, wherein a pilot control pressure VSDI is modulated with a pressure modulator as a function of a load condition of the vehicle, a deceleration, a speed and/or a coefficient of friction, and a safety pilot control pressure SVSD is controlled with an adjusting device, and wherein in normal operation, a supply pressure is controlled only by the VSDI while, in the event of a system malfunction, the supply pressure is controlled only by the SVSD, wherein it is ensured that the emergency braking pressure does not exceed a nominal pressure in the event of the system malfunction.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 13, 2023
    Inventors: Sebastian LOUCA, Oliver RIEDIGER, Nigel ANSTEY, Maximilian SCHMIDT
  • Publication number: 20210237208
    Abstract: The invention relates to a method for conducting and monitoring a machining process of a workpiece (10), in particular a welding process for joining the workpiece (10) to a further workpiece (10), by means of a high-energy machining beam (14), wherein the method comprises the following steps: generating a high-energy machining beam (14); projecting and/or focusing the machining beam (14) onto the workpiece (10), wherein, in accordance with a machining control signal, different machining regions of the workpiece (10) are machined; generating a measurement beam (16) by means of an optical coherence tomograph (18), wherein the measurement beam (16) is able to be coupled into the machining beam (14); determining measurement points (20) during the machining process by means of the optical coherence tomograph (18) using the measurement beam (16), in accordance with a measurement control signal; obtaining at least one external signal which is based on a measured variable and which is independent of a processing of t
    Type: Application
    Filed: January 29, 2021
    Publication date: August 5, 2021
    Applicant: Lessmüller Lasertechnik GmbH
    Inventors: Eckhard Lessmueller, Christian Truckenbrodt, Maximilian Schmidt