Patents by Inventor Maxwell R. Murialdo

Maxwell R. Murialdo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11641282
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: May 2, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20220193596
    Abstract: A composite material for gas capture including CO2 capture and capture of other gases. The composite material includes solid or liquid reactive material, filler material, and a gas-permeable polymer coating such that the reactive material forms micron-scale domains in the filler material.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Inventors: Du T. Nguyen, Sarah E. Baker, William L. Bourcier, Joshua K. Stolaroff, Congwang Ye, Maxwell R. Murialdo, Maira R. Cerón Hernández, Jennifer M. Knipe
  • Patent number: 11305226
    Abstract: A composite material for gas capture including CO2 capture and capture of other gases. The composite material includes solid or liquid reactive material, filler material, and a gas-permeable polymer coating such that the reactive material forms micron-scale domains in the filler material.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 19, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Du T. Nguyen, Sarah E. Baker, William L. Bourcier, Joshuah K. Stolaroff, Congwang Ye, Maxwell R. Murialdo, Maira R. Cerón Hernández, Jennifer M. Knipe
  • Patent number: 11271747
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: March 8, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20210288815
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 16, 2021
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20210083879
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20190240611
    Abstract: A composite material for gas capture including CO2 capture and capture of other gases. The composite material includes solid or liquid reactive material, filler material, and a gas-permeable polymer coating such that the reactive material forms micron-scale domains in the filler material.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Du T. Nguyen, Sarah E. Baker, William L. Bourcier, Joshuah K. Stolaroff, Congwang Ye, Maxwell R. Murialdo, Maira R. Cerón Hernández, Jennifer M. Knipe