Patents by Inventor Maxwell Walthour Lippitt, III

Maxwell Walthour Lippitt, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8497565
    Abstract: In a disclosed embodiment, a stacked capacitor (100) has bottom, middle and top metal electrode layers (141A, 141B, 141C) interleaved with dielectric layers (142A, 142B) conformally disposed within holes (140A, 140B, 140C) in a protective overcoat or backend dielectric layer (110) over a top metal layer (115) of an integrated circuit (105). A top electrode (155) contacts the top metal electrode layer (141C). A bottom electrode (150) electrically couples an isolated part of the top metal electrode layer (141C) through a bottom electrode via (165A) to a first contact node (135A) in the top metal layer (115) which is in contact with the bottom metal electrode layer (141A). A middle electrode (160) electrically couples a part of the middle metal electrode layer (141B) not covered by the top metal layer (115) through a middle electrode via (165B) to a second contact node (135B) in the top metal electrode layer (115).
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Byron Lovell Willaims, Maxwell Walthour Lippitt, III, Betty Mercer, Scott Montgomery, Binghua Hu
  • Patent number: 8431463
    Abstract: A method is disclosed for passivating and contacting a capacitor in an IC above a top level of interconnect metallization, without adding process steps. Passivation is accomplished by a dielectric layer, part of the IC protective overcoat, deposited directly on the capacitor, overlapping the electrode edges. Contact is made to the top electrode of the capacitor by etching small capacitor vias during a bond pad via etch process, followed by depositing and patterning bond pad metal in the capacitor vias to connect the top electrode to other circuit elements in the IC. The top electrode thickness is increased to accommodate the bond pad via etch process.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: April 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Maxwell Walthour Lippitt, III, Stephen Arlon Meisner, Lee Alan Stringer, Stephen Fredrick Clark, Fred Percy Debnam, II, Byron Lovell Williams
  • Publication number: 20110156209
    Abstract: In a disclosed embodiment, a stacked capacitor (100) has bottom, middle and top metal electrode layers (141A, 141B, 141C) interleaved with dielectric layers (142A, 142B) conformally disposed within holes (140A, 140B, 140C) in a protective overcoat or backend dielectric layer (110) over a top metal layer (115) of an integrated circuit (105). A top electrode (155) contacts the top metal electrode layer (141C). A bottom electrode (150) electrically couples an isolated part of the top metal electrode layer (141C) through a bottom electrode via (165A) to a first contact node (135A) in the top metal layer (115) which is in contact with the bottom metal electrode layer (141A). A middle electrode (160) electrically couples a part of the middle metal electrode layer (141B) not covered by the top metal layer (115) through a middle electrode via (165B) to a second contact node (135B) in the top metal electrode layer (115).
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Byron Lovell Williams, Maxwell Walthour Lippitt, III, Betty Mercer, Scott Montgomery, Binghua Hu
  • Patent number: 7902033
    Abstract: An embodiment generally relates a method of forming capacitors. The method includes forming a plurality of holes within a protective overcoat or backend dielectric layer of an integrated circuit and depositing multiple layers of metal, each layer of metal electrically tied to an associated electrode. The method also includes alternately depositing multiple layers of dielectric between the multiple layers of metal and coupling a bottom layer of the multiple layers of metal to a contact node in a top metal layer of the integrated circuit.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: March 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Byron Lovell Williams, Maxwell Walthour Lippitt, III, Betty Mercer, Scott Montgomery, Binghua Hu
  • Patent number: 7800226
    Abstract: A method for forming a metal silicide region in a silicon region of a semiconductor substrate. The method comprises forming a metal layer over the silicon region, then in succession forming a titanium and a titanium nitride layer thereover. As the substrate is heated to form the silicide, the titanium getters silicon dioxide on the surface of the silicon region and the titanium nitride promotes the formation of a smooth surface at the interface between the silicide layer and the underlying silicon region.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: September 21, 2010
    Assignee: Agere Systems Inc.
    Inventors: Yuanning Chen, Maxwell Walthour Lippitt, III, William M. Moller
  • Patent number: 7670920
    Abstract: An embodiment relates generally to a method of forming a capacitor. The method includes depositing a first layer of polysilicon on a substrate and implanting a high dose of implant into the first layer of polysilicon. The method also includes depositing a layer of dielectric over the first layer of polysilicon and depositing a second layer of polysilicon over the layer of dielectric. The method further includes implanting an equivalent concentration of implant in both the first layer of polysilicon into the second layer of polysilicon.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: March 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Byron Lovell Williams, Maxwell Walthour Lippitt, III, C. Matthew Thompson
  • Publication number: 20100032803
    Abstract: A method is disclosed for passivating and contacting a capacitor in an IC above a top level of interconnect metallization, without adding process steps. Passivation is accomplished by a dielectric layer, part of the IC protective overcoat, deposited directly on the capacitor, overlapping the electrode edges. Contact is made to the top electrode of the capacitor by etching small capacitor vias during a bond pad via etch process, followed by depositing and patterning bond pad metal in the capacitor vias to connect the top electrode to other circuit elements in the IC. The top electrode thickness is increased to accommodate the bond pad via etch process.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 11, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Maxwell Walthour Lippitt, III, Stephen Arlon Meisner, Lee Alan Stringer, Stephen Fredrick Clark, Fred Percy Debnam, II, Byron Lovell Williams
  • Publication number: 20090200637
    Abstract: An embodiment generally relates a method of forming capacitors. The method includes forming a plurality of holes within a protective overcoat or backend dielectric layer of an integrated circuit and depositing multiple layers of metal, each layer of metal electrically tied to an associated electrode. The method also includes alternately depositing multiple layers of dielectric between the multiple layers of metal and coupling a bottom layer of the multiple layers of metal to a contact node in a top metal layer of the integrated circuit.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 13, 2009
    Inventors: Byron Lovell Williams, Maxwell Walthour Lippitt, III, Betty Mercer, Scott Montgomery, Binghua Hu
  • Patent number: 7250356
    Abstract: A method for forming a metal silicide region in a silicon region of a semiconductor substrate. The method comprises forming a metal layer over the silicon region, then in succession forming a titanium and a titanium nitride layer thereover. As the substrate is heated to form the silicide, the titanium getters silicon dioxide on the surface of the silicon region and the titanium nitride promotes the formation of a smooth surface at the interface between the silicide layer and the underlying silicon region.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: July 31, 2007
    Assignee: Agere Systems Inc.
    Inventors: Yuanning Chen, Maxwell Walthour Lippitt, III, William M. Moller