Patents by Inventor Maxwell Wheeler

Maxwell Wheeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11173490
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: November 16, 2021
    Assignees: University of Washington, Global Life Sciences Solutions Operations UK Ltd.
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, Joshua Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Publication number: 20210349087
    Abstract: The present technology generally relates to stopped-flow microfluidic devices. Select embodiments of the present technology include microfluidic devices having a first porous element configured to receive a first fluid and a second porous element configured to receive a second fluid. The second porous element can have one or more legs overlapping with the first porous element. The device can be configured such that (a) delivery of the first fluid to the first porous element causes the first fluid to flow along the length of the first porous element without substantially wetting the one or more legs, and (b) delivery of the second fluid to the second porous element causes the second fluid to flow into the overlapping regions of the first porous element, thereby substantially stopping flow of the first fluid along at least a portion of the first porous element.
    Type: Application
    Filed: October 1, 2019
    Publication date: November 11, 2021
    Applicant: University of Washington
    Inventors: Joshua BUSER, Joshua BISHOP, Dylan GUELIG, Arielle HOWELL, Sujatha KUMAR, Paul YAGER, Koji ABE, Erin HEINIGER, Samantha BYRNES, Caitlin ANDERSON, Peter C. KAUFFMAN, Maxwell WHEELER
  • Patent number: 11098346
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 24, 2021
    Assignee: University of Washington
    Inventors: Joshua Bishop, Joshua Buser, Samantha Byrnes, Shivani Dharmaraja, Elain S. Fu, Jared Houghtaling, Peter C. Kauffman, Sujatha Kumar, Lisa Lafleur, Tinny Liang, Barry Lutz, Bhushan Toley, Maxwell Wheeler, Paul Yager, Xiaohong Zhang
  • Publication number: 20190134637
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
    Type: Application
    Filed: August 9, 2018
    Publication date: May 9, 2019
    Inventors: Joshua Bishop, Joshua Buser, Samantha Byrnes, Shivani Dharmaraja, Elain S. Fu, Jared Houghtaling, Peter C. Kauffman, Sujatha Kumar, Lisa Lafleur, Tinny Liang, Barry Lutz, Bhushan Toley, Maxwell Wheeler, Paul Yager, Xiaohong Zhang
  • Publication number: 20190009276
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 10, 2019
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, Joshua Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Patent number: 10040069
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: August 7, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, Joshua Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Publication number: 20170022550
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 26, 2017
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, John Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Publication number: 20150361487
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
    Type: Application
    Filed: January 22, 2014
    Publication date: December 17, 2015
    Inventors: Joshua Bishop, Joshua Buser, Samantha Byrnes, Shivani Dharmaraja, Elain S. Fu, Jared Houghtaling, Peter C. Kauffman, Sujatha Kumar, Lisa Lafleur, Tinny Liang, Barry Lutz, Bhushan Toley, Maxwell Wheeler, Paul Yager, Xiaohong Zhang