Patents by Inventor Mayank Shekhar

Mayank Shekhar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180044260
    Abstract: Processes are provided for conversion of oxygenated hydrocarbon, such as methanol and/or dimethyl ether, to aromatics, such as a para-xylene, and olefins, such as ethylene and propylene. The processes entail using a reactor having multiple reaction zones where each zone is prepared to promote desired reactions.
    Type: Application
    Filed: December 7, 2015
    Publication date: February 15, 2018
    Inventors: Nikolaos Soultanidis, Jeevan s. Abichandani, Mayank Shekhar
  • Patent number: 9845272
    Abstract: The invention relates to the conversion of light hydrocarbon to higher-value hydrocarbon, such as aromatic hydrocarbon, to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. The conversion can be carried out in two stages, with each stage containing a dehydrocyclization catalyst comprising at least one dehydrogenation component and at least one molecular sieve.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 19, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Samia Ilias, Mayank Shekhar, Paul F. Keusenkothen
  • Patent number: 9815749
    Abstract: The invention relates to the production of aromatic hydrocarbon by the conversion of a feed comprising saturated hydrocarbon. At least a portion of the saturated hydrocarbon is converted to olefinic hydrocarbon. Aromatic hydrocarbon is produced from at least a portion of the olefinic hydrocarbon using at least one dehydrocyclization catalyst comprising dehydrogenation and molecular sieve components.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: November 14, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Mohsen N. Harandi, John S. Buchanan, Mayank Shekhar
  • Patent number: 9809505
    Abstract: Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: November 7, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Stephen H. Brown, Lorenzo C. DeCaul, Brett T. Loveless, Rohit Vijay, Stephen J. McCarthy, Michel Daage, Mayank Shekhar
  • Publication number: 20170305812
    Abstract: The invention relates to catalytic aromatization, e.g., for the conversion of non-aromatic hydrocarbon to higher-value aromatic hydrocarbon, to catalysts useful for such aromatization, to methods for making such catalysts, and to systems and apparatus for carrying out aromatization in the presence of the catalyst.
    Type: Application
    Filed: March 27, 2017
    Publication date: October 26, 2017
    Inventors: Paul F. Keusenkothen, Samia IIias, John Scott Buchanan, Mayank Shekhar, Reyyan Koc-Karabocek, Teng Xu
  • Publication number: 20170305810
    Abstract: Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 26, 2017
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Stephen H. Brown, Lorenzo C. DeCaul, Brett T. Loveless, Rohit Vijay, Stephen J. McCarthy, Michel Daage, Mayank Shekhar
  • Patent number: 9790139
    Abstract: Processes for catalytically converting oxygenates to hydrocarbon products having an increased C6-C8 aromatics content therein. A first mixture comprising ?10.0 wt. % of at least one oxygenate, based on the weight of the first mixture, contacts a catalyst in a fluidized bed reactor to produce a product stream including water, one or more hydrocarbons comprising ?30.0 wt. % of aromatics, based on the weight of the hydrocarbons in the product stream, hydrogen, and one or more oxygenates. The catalyst comprises at least one molecular sieve, a binder, and at least one element selected from Groups 2-14 of the Periodic Table. At least one water-rich stream, at least one aromatic-rich hydrocarbon stream, and at least one aromatic-depleted hydrocarbon stream are separated from the product stream, and at least a portion of one of the aromatic-rich hydrocarbon stream or the aromatic-depleted hydrocarbon stream is recycled back to the reactor.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: October 17, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Nikolaos Soultanidis, Mayank Shekhar, John S. Coleman, Jeevan S. Abichandani, Stephen J. McCarthy
  • Patent number: 9732013
    Abstract: Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: August 15, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Stephen H. Brown, Lorenzo C. DeCaul, Brett T. Loveless, Rohit Vijay, Stephen J. McCarthy, Michel Daage, Mayank Shekhar
  • Publication number: 20170144947
    Abstract: The invention relates to the production of aromatic hydrocarbon by the conversion of a feed comprising saturated hydrocarbon. At least a portion of the saturated hydrocarbon is converted to olefinic hydrocarbon. Aromatic hydrocarbon is produced from at least a portion of the olefinic hydrocarbon using at least one dehydrocyclization catalyst comprising dehydrogenation and molecular sieve components.
    Type: Application
    Filed: August 18, 2016
    Publication date: May 25, 2017
    Inventors: Paul F. Keusenkothen, Mohsen N. Harandi, John S. Buchanan, Mayank Shekhar
  • Publication number: 20170088487
    Abstract: The invention relates to the conversion of light hydrocarbon to higher-value hydrocarbon, such as aromatic hydrocarbon, to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. The conversion can be carried out in two stages, with each stage containing a dehydrocyclization catalyst comprising at least one dehydrogenation component and at least one molecular sieve.
    Type: Application
    Filed: August 18, 2016
    Publication date: March 30, 2017
    Inventors: John S. Buchanan, Samia Ilias, Mayank Shekhar, Paul F. Keusenkothen
  • Publication number: 20170088488
    Abstract: The invention relates to the production of aromatic hydrocarbon by the conversion of a feed comprising C2+ non-aromatic hydrocarbon, e.g., natural gas. The invention is particularly useful in converting natural gas to liquid-phase aromatic hydrocarbon, which can be more easily transported away from remote natural gas production facilities. The conversion is carried out in the presence of a dehydrocyclization catalyst comprising dehydrogenation and molecular sieve components. The dehydrocyclization catalyst has an average residence time of 90 seconds or less.
    Type: Application
    Filed: August 18, 2016
    Publication date: March 30, 2017
    Inventors: Mayank Shekhar, Paul F. Keusenkothen
  • Publication number: 20170087540
    Abstract: The invention relates to catalysts and their use in processes for dehydrocyclization of light paraffinic hydrocarbon feedstock to higher-value hydrocarbon, such as aromatic hydrocarbon, to dehydrocyclization catalysts useful in such processes, and to the methods of making such catalysts. One of more of the dehydrocyclization catalysts comprising a crystalline aluminosilicate zeolite having a constraint index of less than or equal to about 12, at least one Group 3 to Group 13 metal of the IUPAC Periodic Table and phosphorous.
    Type: Application
    Filed: August 18, 2016
    Publication date: March 30, 2017
    Inventors: Samia Ilias, Mayank Shekhar, Paul F. Keusenkothen, John S. Buchanan
  • Publication number: 20170088492
    Abstract: The invention relates to the hydrocarbon upgrading to produce aromatic hydrocarbon, to equipment and materials useful in such upgrading, and to the use of such upgrading for, e.g., producing aromatic hydrocarbon natural gas. The upgrading can be carried out in the presence of a dehydrocyclization catalyst comprising at least one dehydrogenation component and at least one molecular sieve.
    Type: Application
    Filed: August 18, 2016
    Publication date: March 30, 2017
    Inventors: Paul F. Keusenkothen, John S. Buchanan, Samia Ilias, Mayank Shekhar
  • Publication number: 20160207846
    Abstract: The present invention relates to a multistage process and catalyst system therefor to convert syngas to aromatics. In a first stage, syngas is converted to a C1-C4 alcohol mixture by contacting syngas with a first catalyst comprising rhodium or copper at moderate temperature. In a second stage, the C1-C4 alcohol mixture is converted into an aromatic product by contact with a second catalyst comprising a molecular sieve and at least one Group 8-14 element, the molecular sieve having a Constraint Index about 1 to 12 and a silica to alumina ratio of about 10 to 100 at effective conversion conditions. The final aromatic product is rich in benzene, toluene, and xylenes (e.g. greater than 50% aromatics on a hydrocarbon basis).
    Type: Application
    Filed: December 10, 2015
    Publication date: July 21, 2016
    Inventors: Nikolaos Soultanidis, Mayank Shekhar, John S. Coleman
  • Publication number: 20160145170
    Abstract: A catalyst system and processes for combined aromatization and selective hydrogen combustion of oxygenated hydrocarbons are disclosed. The catalyst system contains at least one aromatization component and at least one selective hydrogen combustion component. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the aromatization component alone.
    Type: Application
    Filed: October 7, 2015
    Publication date: May 26, 2016
    Inventors: Paul F. Keusenkothen, Seth M. Washburn, Neeraj Sangar, Nikolaos Soultanidis, Mayank Shekhar
  • Publication number: 20160090332
    Abstract: Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
    Type: Application
    Filed: August 18, 2015
    Publication date: March 31, 2016
    Inventors: John S. Buchanan, Stephen H. Brown, Lorenzo C. DeCaul, Brett T. Loveless, Rohit Vijay, Stephen J. McCarthy, Michel Daage, Mayank Shekhar
  • Publication number: 20150175501
    Abstract: Processes for catalytically converting oxygenates to hydrocarbon products having an increased C6-C8 aromatics content therein. A first mixture comprising ?10.0 wt. % of at least one oxygenate, based on the weight of the first mixture, contacts a catalyst in a fluidized bed reactor to produce a product stream including water, one or more hydrocarbons comprising ?30.0 wt. % of aromatics, based on the weight of the hydrocarbons in the product stream, hydrogen, and one or more oxygenates. The catalyst comprises at least one molecular sieve, a binder, and at least one element selected from Groups 2-14 of the Periodic Table. At least one water-rich stream, at least one aromatic-rich hydrocarbon stream, and at least one aromatic-depleted hydrocarbon stream are separated from the product stream, and at least a portion of one of the aromatic-rich hydrocarbon stream or the aromatic-depleted hydrocarbon stream is recycled back to the reactor.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 25, 2015
    Inventors: Nikolaos Soultanidis, Mayank Shekhar, John S. Coleman, Jeevan S. Abichandani, Stephen J. McCarthy
  • Publication number: 20150175499
    Abstract: Methods are provided for conversion of methanol and/or dimethyl ether to aromatics, such as a para-xylene, and olefins, such as ethylene and propylene. The methods can be used in conjunction with molecular sieve (zeolite) catalysts that are prepared for use in conjunction with selected effective conversion conditions. The combination of a catalyst and a corresponding effective conversion condition can allow for improved yield aromatics and olefins generally; improved yield of desired aromatics and olefins, such as para-xylene, ethylene, and/or propylene; reduced production of less desirable side products, such as methane, CO, CO2, and/or coke; or a combination thereof. The preparation of the catalyst can include modification of the catalyst with a transition metal, such as Zn or Ga. The preparation of the catalyst can also include steaming of the catalyst. In some aspects, the preparation of the catalyst can further include modifying the catalyst with phosphorous.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 25, 2015
    Inventors: John D. Ou, Nikolaos Soultanidis, Mayank Shekhar, Samia Ilias, Helge Jaensch, Stephen J. McCarthy
  • Patent number: 8903860
    Abstract: A system and method of identifying a data owner examining a plurality of criterion including access type, number of accesses at a given time and over the period of time selected, recentness of access, and permission levels of users. The method of file owner identification comprises collecting a plurality of samples including usage of a file by a plurality of users. A plurality of factors is calculated based on said plurality of users, wherein a respective factor is calculated for each of said plurality of users, wherein each factor is based on a plurality of use elements. Based on said plurality of factors, a file owner is determined of said file from among said plurality of users. The file owner may be communicated and/or displayed e.g., in a graph.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: December 2, 2014
    Assignee: Symantec Corporation
    Inventors: Nikhil Marathe, Parag V. Thakur, Ganesh Vasantrao Gaikwad, Mayank Shekhar, Ketan Shah, Sharad Srivastava
  • Publication number: 20110225199
    Abstract: A system and method of identifying a data owner examining a plurality of criterion including access type, number of accesses at a given time and over the period of time selected, recentness of access, and permission levels of users. The method of file owner identification comprises collecting a plurality of samples including usage of a file by a plurality of users. A plurality of factors is calculated based on said plurality of users, wherein a respective factor is calculated for each of said plurality of users, wherein each factor is based on a plurality of use elements. Based on said plurality of factors, a file owner is determined of said file from among said plurality of users. The file owner may be communicated and/or displayed e.g., in a graph.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 15, 2011
    Applicant: SYMANTEC CORPORATION
    Inventors: Nikhil Marathe, Parag V. Thakur, Ganesh Vasantrao Gaikwad, Mayank Shekhar, Ketan Shah, Sharad Srivastava