Patents by Inventor Mayu Felicia Yamamura

Mayu Felicia Yamamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230256560
    Abstract: A method of forming a polishing pad that has a polishing region and a window region, wherein both regions are made of an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 17, 2023
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Rajeev Bajaj, Daniel Redfield, Mayu Felicia Yamamura, Yingdong Luo, Nag B. Patibandla
  • Publication number: 20230256567
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes depositing a first set successive layers by droplet ejection to form a. Depositing the successive layers includes dispensing a polishing pad precursor to first regions corresponding to partitions of the polishing pad and dispensing a sacrificial material to second regions corresponding to grooves of the polishing pad. Removing the sacrificial material provides the polishing pad with a polishing surface that has the partitions separated by the grooves.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Daniel Redfield, Jason Garcheung Fung, Mayu Felicia Yamamura
  • Publication number: 20230219190
    Abstract: Interpenetrating polymer networks (IPNs) for a forming polishing pad for a semiconductor fabrication operation are disclosed. Techniques for forming the polishing pads are provided. In an exemplary embodiment, a polishing pad includes an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: March 21, 2023
    Publication date: July 13, 2023
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Mayu Felicia Yamamura, Daniel Redfield, Rajeev Bajaj, Yingdong Luo, Nag B. Patibandla
  • Patent number: 11642757
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes depositing a first set successive layers by droplet ejection to form a. Depositing the successive layers includes dispensing a polishing pad precursor to first regions corresponding to partitions of the polishing pad and dispensing a sacrificial material to second regions corresponding to grooves of the polishing pad. Removing the sacrificial material provides the polishing pad with a polishing surface that has the partitions separated by the grooves.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: May 9, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Daniel Redfield, Jason Garcheung Fung, Mayu Felicia Yamamura
  • Patent number: 11638979
    Abstract: A polishing pad for a semiconductor fabrication operation includes a polishing region and a window region, wherein both regions are made of an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: May 2, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Rajeev Bajaj, Daniel Redfield, Mayu Felicia Yamamura, Yingdong Luo, Nag B. Patibandla
  • Patent number: 11612978
    Abstract: Interpenetrating polymer networks (IPNs) for a forming polishing pad for a semiconductor fabrication operation are disclosed. Techniques for forming the polishing pads are provided. In an exemplary embodiment, a polishing pad includes an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Mayu Felicia Yamamura, Daniel Redfield, Rajeev Bajaj, Yingdong Luo, Nag B. Patibandla
  • Patent number: 11597054
    Abstract: A method of fabricating an object using an additive manufacturing system includes receiving data indicative of a desired shape of the object to be fabricated by droplet ejection. The desired shape defines a profile including a top surface and one or more recesses. Data indicative of a pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the pattern.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng
  • Publication number: 20220359219
    Abstract: A method of processing a substrate includes selectively dispensing a treatment fluid on a die-by-die basis to onto a substrate, and chemical mechanical polishing the substrate after dispensing the treatment fluid. The treatment fluid modifies a polishing rate of the chemical mechanical polishing at one or more selected die(s) to which the treatment fluid is applied in comparison to one or more remaining die(s) to which the treatment fluid is not applied.
    Type: Application
    Filed: May 2, 2022
    Publication date: November 10, 2022
    Inventors: Haosheng Wu, Shou-Sung Chang, Jianshe Tang, Brian J. Brown, Alexander John Fisher, Hari Soundararajan, Mayu Felicia Yamamura
  • Publication number: 20220001507
    Abstract: A method of fabricating an object using an additive manufacturing system includes receiving data indicative of a desired shape of the object to be fabricated by droplet ejection. The desired shape defines a profile including a top surface and one or more recesses. Data indicative of a pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the pattern.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng
  • Publication number: 20210379726
    Abstract: A polishing pad for a semiconductor fabrication operation includes a polishing region and a window region, wherein both regions are made of an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Rajeev Bajaj, Daniel Redfield, Mayu Felicia Yamamura, Yingdong Luo, Nag B. Patibandla
  • Publication number: 20210379725
    Abstract: Interpenetrating polymer networks (IPNs) for a forming polishing pad for a semiconductor fabrication operation are disclosed. Techniques for forming the polishing pads are provided. In an exemplary embodiment, a polishing pad includes an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Mayu Felicia Yamamura, Daniel Redfield, Rajeev Bajaj, Yingdong Luo, Nag B. Patibandla
  • Patent number: 11154961
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes receiving data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection. The desired shape defines a profile including a polishing surface and one or more grooves on the polishing pad. Data indicative of a modified pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the modified pattern.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: October 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng
  • Patent number: 11059149
    Abstract: Data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection by the additive manufacturing system is received. The data includes a desired shape defining a desired profile including a polishing surface having one or more partitions separated by one or more grooves on the polishing pad. Data indicative of distortions from the desired profile caused by dispensing of layers by droplet ejection by the additive manufacturing system is generated. Data indicative of an initial layer to dispense by droplet ejection is generated to at least partially compensate for the distortions from the desired profile. The initial layer is dispensed on a support by droplet ejection. Overlying layers are dispensed on the initial layer by droplet ejection by the additive manufacturing system to form the polishing pad.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: July 13, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Daniel Redfield, Jason Garcheung Fung, Mayu Felicia Yamamura
  • Publication number: 20210114172
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes depositing a first set successive layers by droplet ejection to form a. Depositing the successive layers includes dispensing a polishing pad precursor to first regions corresponding to partitions of the polishing pad and dispensing a sacrificial material to second regions corresponding to grooves of the polishing pad. Removing the sacrificial material provides the polishing pad with a polishing surface that has the partitions separated by the grooves.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Daniel Redfield, Jason Garcheung Fung, Mayu Felicia Yamamura
  • Patent number: 10882160
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes depositing a first set of successive layers onto a support by droplet ejection. Depositing the first set of successive layers includes dispensing a polishing pad precursor to first regions corresponding to partitions of the polishing pad and dispensing a sacrificial material to second regions corresponding to grooves of the polishing pad. A second set of successive layers is deposited by droplet ejection over the first set of successive layers. The second set of successive layers corresponds to a lower portion of the polishing pad. The first set of successive layer and the second set of successive layers provide a body. The body is removed from the support. Removing the sacrificial material from the body provides the polishing pad with a polishing surface that has the partitions separated by the grooves.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Daniel Redfield, Jason Garcheung Fung, Mayu Felicia Yamamura
  • Publication number: 20200139507
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes receiving data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection. The desired shape defines a profile including a polishing surface and one or more grooves on the polishing pad. Data indicative of a modified pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the modified pattern.
    Type: Application
    Filed: January 8, 2020
    Publication date: May 7, 2020
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng
  • Patent number: 10537973
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes receiving data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection. The desired shape defines a profile including a polishing surface and one or more grooves on the polishing pad. Data indicative of a modified pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the modified pattern.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng
  • Publication number: 20180339402
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes depositing a first set of successive layers onto a support by droplet ejection. Depositing the first set of successive layers includes dispensing a polishing pad precursor to first regions corresponding to partitions of the polishing pad and dispensing a sacrificial material to second regions corresponding to grooves of the polishing pad. A second set of successive layers is deposited by droplet ejection over the first set of successive layers. The second set of successive layers corresponds to a lower portion of the polishing pad. The first set of successive layer and the second set of successive layers provide a body. The body is removed from the support. Removing the sacrificial material from the body provides the polishing pad with a polishing surface that has the partitions separated by the grooves.
    Type: Application
    Filed: January 17, 2018
    Publication date: November 29, 2018
    Inventors: Daniel Redfield, Jason Garcheung Fung, Mayu Felicia Yamamura
  • Publication number: 20180339401
    Abstract: Data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection by the additive manufacturing system is received. The data includes a desired shape defining a desired profile including a polishing surface having one or more partitions separated by one or more grooves on the polishing pad. Data indicative of distortions from the desired profile caused by dispensing of layers by droplet ejection by the additive manufacturing system is generated. Data indicative of an initial layer to dispense by droplet ejection is generated to at least partially compensate for the distortions from the desired profile. The initial layer is dispensed on a support by droplet ejection. Overlying layers are dispensed on the initial layer by droplet ejection by the additive manufacturing system to form the polishing pad.
    Type: Application
    Filed: January 17, 2018
    Publication date: November 29, 2018
    Inventors: Daniel Redfield, Jason Garcheung Fung, Mayu Felicia Yamamura
  • Publication number: 20170259396
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes receiving data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection. The desired shape defines a profile including a polishing surface and one or more grooves on the polishing pad. Data indicative of a modified pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the modified pattern.
    Type: Application
    Filed: March 9, 2017
    Publication date: September 14, 2017
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng