Patents by Inventor Mayu Komatsu

Mayu Komatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230345839
    Abstract: A piezoelectric device includes a piezoelectric film and a carbon-nanotube (CNT)-based electrode layer directly disposed on at least one side of the piezoelectric film. The CNT-based first electrode layer has a sheet resistance of less than 300 ohm/sq.
    Type: Application
    Filed: April 21, 2023
    Publication date: October 26, 2023
    Applicant: Kureha America, Inc.
    Inventors: Tatsuya Yaguchi, Mayu Komatsu
  • Publication number: 20230278009
    Abstract: A degradable adsorbent includes a porous degradable polymeric substrate, and nanoparticles bound to the porous degradable polymeric substrate. A method for removing an impurity from a fluid includes immersing a degradable adsorbent in the fluid containing the impurity, adsorbing the impurities in the degradable adsorbent, and disintegrating the degradable adsorbent in an aqueous solvent to produce a mixture containing the aqueous solvent, a degraded substrate and the impurity.
    Type: Application
    Filed: March 1, 2023
    Publication date: September 7, 2023
    Applicant: Kureha America, Inc.
    Inventors: Shunsuke Abe, Mayu Komatsu, Naomitsu Nishihata
  • Publication number: 20230280857
    Abstract: A piezoelectric sensing module includes a polyvinylidene fluoride (PVDF) piezoelectric film, a first electrode layer that includes multiple receiver electrodes arranged in a first pattern enabling a sensing of a position of an input object on a touch surface using the PVDF piezoelectric film, and a second electrode layer that includes at least one common electrode. The PVDF piezoelectric film is arranged between the first electrode layer and the second electrode layer, with the second electrode layer between the PVDF piezoelectric film and the touch surface.
    Type: Application
    Filed: March 3, 2023
    Publication date: September 7, 2023
    Applicant: Kureha America, Inc.
    Inventors: Mayu Komatsu, Tatsuya Yaguchi, Naomitsu Nishihata
  • Patent number: 11394019
    Abstract: There are provided a method capable of producing a large amount of a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery from a carbon precursor impregnated with an alkali metal element or an alkali metal compound, and an apparatus for performing such production. The method for producing a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery includes a heat treatment step of feeding a carbon precursor containing an elemental alkali metal and/or an alkali metal compound, heating the carbon precursor in a temperature range from 1000° C. to 1500° C. in a non-oxidizing gas atmosphere to produce a carbonaceous material, and discharging the carbonaceous material; and an exhaust gas treatment step of contacting a non-oxidizing exhaust gas containing a gas and a flying carbonaceous matter evolved in the heat treatment step with water or an aqueous solution to treat the exhaust gas.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: July 19, 2022
    Assignees: KUREHA CORPORATION, TSUKISHIMA KIKAI CO., LTD.
    Inventors: Naohiro Sonobe, Mayu Komatsu, Koji Miwa, Kokei Ueno
  • Publication number: 20210234147
    Abstract: There are provided a method capable of producing a large amount of a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery from a carbon precursor impregnated with an alkali metal element or an alkali metal compound, and an apparatus for performing such production. The method for producing a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery according to the present invention includes a heat treatment step of feeding a carbon precursor containing an elemental alkali metal and/or an alkali metal compound, heating the carbon precursor in a temperature range from 1000° C. to 1500° C. in a non-oxidizing gas atmosphere to produce a carbonaceous material, and discharging the carbonaceous material; and an exhaust gas treatment step of contacting a non-oxidizing exhaust gas containing a gas and a flying carbonaceous matter evolved in the heat treatment step with water or an aqueous solution to treat the exhaust gas.
    Type: Application
    Filed: June 6, 2019
    Publication date: July 29, 2021
    Inventors: Naohiro SONOBE, Mayu KOMATSU, Koji MIWA, Kokei UENO
  • Patent number: 10388956
    Abstract: An object of the present invention is to provide a carbonaceous molded article for electrodes having high charge/discharge capacity, high initial charge/discharge efficiency, and excellent cycle life without a polymeric binder. The above object can be achieved by the carbonaceous molded article for electrodes of the present invention comprising a carbon fiber nonwoven fabric, the article having a thickness of not greater than 1 mm, an atomic ratio (H/C) of hydrogen atoms and carbon atoms according to elemental analysis of not greater than 0.1, a porosity determined from a bulk density and a butanol true density of the molded article of 25 to 80%, and a volatile content of not greater than 5.0 wt %.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: August 20, 2019
    Assignee: KUREHA CORPORATION
    Inventors: Shota Kobayashi, Takanori Baba, Hiroshi Imoto, Mayu Komatsu, Naohiro Sonobe
  • Patent number: 9991517
    Abstract: Provided is a carbonaceous material for a non-aqueous electrolyte secondary battery anode having high discharge capacity per unit volume and excellent storage characteristics. The carbonaceous material for a non-aqueous electrolyte secondary battery anode of the present invention has a true density (?Bt) determined by a pycnometer method using butanol of not less than 1.55 g/cm3 and less than 1.75 g/cm3 and a discharge capacity of an anode at 0.05 V to 1.5 V in terms of a lithium reference electrode standard of not less than 180 mAh/g. Furthermore, the slope 0.9/X (Vg/Ah) of a discharge curve calculated from a discharge capacity X (Ah/g) and a potential difference of 0.9 (V) corresponding to 0.2 V to 1.1 V in terms of a lithium reference electrode standard is not greater than 0.75 (Vg/Ah), and an absorbed moisture quantity after storage for 100 hours in a 25° C. 50% RH air atmosphere is not greater than 1.5 wt %.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 5, 2018
    Assignee: KUREHA CORPORATION
    Inventors: Makoto Imaji, Kayoko Okada, Yasuhiro Tada, Naohiro Sonobe, Mayu Komatsu
  • Patent number: 9812711
    Abstract: To provide a carbonaceous material for a non-aqueous electrolyte secondary battery anode that yields an anode for a non-aqueous electrolyte secondary battery having excellent input/output characteristics, and a non-aqueous electrolyte secondary battery having high discharge capacity per unit volume, and a non-aqueous electrolyte secondary battery and a vehicle comprising this non-aqueous electrolyte secondary battery anode. The carbonaceous material for a non-aqueous electrolyte secondary battery anode of the present invention has a number average particle size of from 0.1 to 2.0 ?m, a value of a number average particle size divided by a volume average particle size of not greater than 0.3, an average interlayer spacing d002 of an (002) plane determined by X-ray diffraction of from 0.340 to 0.390 nm, and an atomic ratio (H/C) of hydrogen and carbon of not greater than 0.10.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: November 7, 2017
    Assignee: KUREHA CORPORATION
    Inventors: Makoto Imaji, Kayoko Okada, Yasuhiro Tada, Naohiro Sonobe, Mayu Komatsu
  • Publication number: 20170162874
    Abstract: A carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery with high energy density relative to volume and excellent cycle characteristics is provided. The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention includes a carbon material mixture including, as an active material, a plurality of non-graphitic carbon materials. The carbon material mixture has a true density (?Bt) determined by a pycnometer method using butanol of 1.60 g/cm3 or greater and 2.05 g/cm3 or less, an atom ratio (H/C) of hydrogen atoms to carbon atoms determined by elemental analysis of 0.10 or less, and a discharge capacity at from 0 to 0.1 V based on a lithium reference electrode of 80 mAh/g or greater and 230 mAh/g or less.
    Type: Application
    Filed: March 27, 2015
    Publication date: June 8, 2017
    Inventors: Shota KOBAYASHI, Yasufumi IKEYAMA, Yasuhiro TADA, Naohiro SONOBE, Mayu KOMATSU
  • Publication number: 20170149062
    Abstract: To provide a carbonaceous material for a non-aqueous electrolyte secondary battery anode that yields an anode for a non-aqueous electrolyte secondary battery having excellent input/output characteristics, and a non-aqueous electrolyte secondary battery having high discharge capacity per unit volume, and a non-aqueous electrolyte secondary battery and a vehicle comprising this non-aqueous electrolyte secondary battery anode. The carbonaceous material for a non-aqueous electrolyte secondary battery anode of the present invention has a number average particle size of from 0.1 to 2.0 ?m, a value of a number average particle size divided by a volume average particle size of not greater than 0.3, an average interlayer spacing d002 of an (002) plane determined by X-ray diffraction of from 0.340 to 0.390 nm, and an atomic ratio (H/C) of hydrogen and carbon of not greater than 0.10.
    Type: Application
    Filed: March 27, 2015
    Publication date: May 25, 2017
    Applicant: KUREHA CORPORATION
    Inventors: MAKOTO IMAJI, KAYOKO OKADA, YASUHIRO TADA, NAOHIRO SONOBE, MAYU KOMATSU
  • Publication number: 20170141394
    Abstract: Provided is a carbonaceous material for a non-aqueous electrolyte secondary battery anode having high discharge capacity per unit volume and excellent storage characteristics. The carbonaceous material for a non-aqueous electrolyte secondary battery anode of the present invention has a true density (?Bt) determined by a pycnometer method using butanol of not less than 1.55 g/cm3 and less than 1.75 g/cm3 and a discharge capacity of an anode at 0.05 V to 1.5 V in terms of a lithium reference electrode standard of not less than 180 mAh/g. Furthermore, the slope 0.9/X (Vg/Ah) of a discharge curve calculated from a discharge capacity X (Ah/g) and a potential difference of 0.9 (V) corresponding to 0.2 V to 1.1 V in terms of a lithium reference electrode standard is not greater than 0.75 (Vg/Ah), and an absorbed moisture quantity after storage for 100 hours in a 25° C. 50% RH air atmosphere is not greater than 1.5 wt %.
    Type: Application
    Filed: March 27, 2015
    Publication date: May 18, 2017
    Inventors: Makoto IMAJI, Kayoko OKADA, Yasuhiro TADA, Naohiro SONOBE, Mayu KOMATSU
  • Publication number: 20170110728
    Abstract: An object of the present invention is to provide a carbonaceous molded article for electrodes having high charge/discharge capacity, high initial charge/discharge efficiency, and excellent cycle life without a polymeric binder. The above object can be achieved by the carbonaceous molded article for electrodes of the present invention comprising a carbon fiber nonwoven fabric, the article having a thickness of not greater than 1 mm, an atomic ratio (H/C) of hydrogen atoms and carbon atoms according to elemental analysis of not greater than 0.1, a porosity determined from a bulk density and a butanol true density of the molded article of 25 to 80%, and a volatile content of not greater than 5.0 wt %.
    Type: Application
    Filed: March 20, 2015
    Publication date: April 20, 2017
    Applicant: Kureha Corporation
    Inventors: SHOTA KOBAYASHI, TAKANORI BABA, HIROSHI IMOTO, MAYU KOMATSU, NAOHIRO SONOBE
  • Publication number: 20170018775
    Abstract: A negative electrode material for a non-aqueous electrolyte secondary battery and the like with high discharge capacity relative to volume and excellent cycle characteristics are provided. The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention comprises, as an active material, a carbon material mixture including a non-graphitic carbon material and a graphitic material. In this carbon material mixture, the non-graphitic carbon material has an atom ratio (H/C) of hydrogen atoms to carbon atoms determined by elemental analysis of 0.10 or less, and an average particle size (Dv50) of from 1 to 8 ?m; and the graphitic material has a true density (?Bt) determined by a pycnometer method using butanol of 2.15 g/cm3 or greater. The true density (?Bt) of the non-graphitic carbon material is preferably 1.52 g/cm3 or greater and less than 2.15 g/cm3.
    Type: Application
    Filed: March 27, 2015
    Publication date: January 19, 2017
    Inventors: SHOTA KOBAYASHI, YASUFUMI IKEYAMA, YASUHIRO TADA, NAOHIRO SONOBE, MAYU KOMATSU
  • Patent number: 9478805
    Abstract: Provided is a manufacturing method of carbonaceous material for a negative electrode of non-aqueous electrolyte secondary batteries, wherein the carbonaceous material is obtained from plant-derived char as a source, potassium is sufficiently removed, and an average particle diameter thereof is small; and a carbonaceous material for a negative electrode of non-aqueous electrolyte secondary batteries. The method for manufacturing a carbonaceous material having an average particle diameter of 3 to 30 ?m, for a negative electrode of non-aqueous electrolyte secondary batteries includes the steps of: (1) heating plant-derived char having an average particle diameter of 100 to 10000 ?m at 500° C. to 1250° C. under an inert gas atmosphere containing halogen compound to demineralize in a gas-phase, (2) pulverizing a carbon precursor obtained by demineralization in a gas-phase, (3) calcining the pulverized carbon precursor at 1000° C. to 1600° C. under an non-oxidizing gas atmosphere.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: October 25, 2016
    Assignees: KUREHA CORPORATION, KURARAY CO., LTD., KURARAY CHEMICAL CO., LTD.
    Inventors: Yasuhiro Tada, Yasushi Ebihara, Mayu Komatsu, Jiro Masuko, Hajime Komatsu, Naohiro Sonobe, Junichi Arima, Akimi Ogawa, Shinya Tago, Kenichi Koyakumaru, Hideharu Iwasaki, Kiyoto Otsuka
  • Publication number: 20160064735
    Abstract: The object of the present invention is to provide a manufacturing method of carbonaceous material for a negative electrode of non-aqueous electrolyte secondary batteries, wherein the carbonaceous material is obtained from plant-derived char as a source, potassium is sufficiently removed, and an average particle diameter thereof is small; and a carbonaceous material for a negative electrode of non-aqueous electrolyte secondary batteries. The object can be solved by a method for manufacturing a carbonaceous material having an average particle diameter of 3 to 30 ?m, for a negative electrode of non-aqueous electrolyte secondary batteries comprising the steps of: (1) heating plant-derived char having an average particle diameter of 100 to 10000 ?m at 500° C. to 1250° C. under an inert gas atmosphere containing halogen compound to demineralize in a gas-phase, (2) pulverizing a carbon precursor obtained by demineralization in a gas-phase, (3) calcining the pulverized carbon precursor at 1000° C. to 1600° C.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 3, 2016
    Applicants: KUREHA CORPORATION, KURARAY CHEMICAL CO., LTD., KURARAY CO., LTD.
    Inventors: Yasuhiro TADA, Yasushi EBIHARA, Mayu KOMATSU, Jiro MASUKO, Hajime KOMATSU, Naohiro SONOBE, Junichi ARIMA, Akimi OGAWA, Shinya TAGO, Kenichi KOYAKUMARU, Hideharu IWASAKI, Kiyoto OTSUKA
  • Publication number: 20150221948
    Abstract: An object of the present invention is to provide a method of producing, stably and at high yield, a carbonaceous material for non-aqueous electrolyte secondary battery negative electrodes, whose raw material is coffee bean, that has high purity achieved by de-mineralization in which alkali metals such as potassium element and alkaline earth metal such as calcium element are sufficiently removed, and that can guarantee reliability, and an intermediate product for obtaining the same. A raw material composition for producing a carbonaceous material for non-aqueous electrolyte secondary battery negative electrodes comprises a roasted coffee bean-derived organic material having an L value of 18.0 or less. The raw material composition for producing a carbonaceous material for non-aqueous electrolyte secondary battery negative electrodes is formed from a roasted coffee bean-derived organic material having an L value of 19.0 or less.
    Type: Application
    Filed: August 30, 2013
    Publication date: August 6, 2015
    Inventors: Mayu Komatsu, Takashi Wakahoi, Yasuhiro Tada, Naohiro Sonobe, Kazuyuki Hasegawa
  • Publication number: 20150188137
    Abstract: The object of the present invention is to provide a carbonaceous material for an anode of a nonaqueous electrolyte secondary battery which uses a plant-derived organic material as a raw material, has high purity so that alkali metals such as the potassium element and alkali earth metals such as the calcium element are sufficiently removed by de-mineral treatment, and has excellent discharge capacity and efficiency, a novel manufacturing method capable of efficiently mass-producing the carbonaceous material, and a lithium ion secondary battery using the carbonaceous material. The problem described above can be solved by a carbonaceous material for an anode of a nonaqueous electrolyte secondary battery obtained by carbonizing a plant-derived organic material, the atom ratio (H/C) of hydrogen atoms and carbon atoms according to elemental analysis being at most 0.
    Type: Application
    Filed: August 30, 2013
    Publication date: July 2, 2015
    Inventors: Mayu Komatsu, Yasushi Ebihara, Takashi Wakahoi, Yasuhiro Tada, Naohiro Sonobe, Mao Suzuki, Kayoko Okada, Akitoshi Hatamochi, Makoto Imaji, Yasufumi Ikeyama, Shota Kobayashi
  • Publication number: 20150180020
    Abstract: The object of the present invention is to provide a carbonaceous material for an anode of a nonaqueous electrolyte secondary battery which uses a plant-derived organic material as a raw material, has high purity so that alkali metals such as the potassium element are sufficiently removed by de-mineral, and has excellent cycle characteristics, and to provide a lithium ion secondary battery using the carbonaceous material. The carbonaceous material for an anode of a nonaqueous electrolyte secondary battery is a carbonaceous material obtained by carbonizing a plant-derived organic material, the atom ratio of hydrogen atoms and carbon atoms (H/C) according to elemental analysis being at most 0.1, the average particle size Dv50 being from 2 to 50 ?m, the average interlayer spacing of the 002 planes determined by X-ray diffraction being from 0.365 nm to 0.400 nm, the potassium element content being at most 0.5 mass %, the calcium element content being at most 0.
    Type: Application
    Filed: August 30, 2013
    Publication date: June 25, 2015
    Applicant: Kureha Battery Materials Japan Co., Lt.d
    Inventors: Mayu Komatsu, Yasushi Ebihara, Takashi Wakahoi, Yasuhiro Tada, Naohiro Sonobe, Mao Suzuki, Kayoko Okada, Akitoshi Hatamochi, Makoto Imaji, Yasufumi Ikeyama, Shota Kobayashi, Kenta Aoki
  • Publication number: 20150024277
    Abstract: An object of the present invention is to provide a carbonaceous material for a non-aqueous electrolyte secondary battery having excellent output characteristics and exhibiting excellent cycle characteristics, and a negative electrode using the same. The problem described above is solved by a carbonaceous material for a non-aqueous electrolyte battery having a true density of 1.4 to 1.7 g/cm3, an atom ratio (H/C) of hydrogen atoms to carbon atoms of at most 0.1, as determined by elemental analysis, an average particle size Dv50 of 3 to 35 ?m, a ratio Dv90/Dv10 of 1.05 to 3.00, and a degree of circularity of 0.50 to 0.95.
    Type: Application
    Filed: February 6, 2013
    Publication date: January 22, 2015
    Inventors: Mayu Komatsu, Yasuhiro Tada, Naohiro Sonobe