Patents by Inventor Mayuko Taeda

Mayuko Taeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150086877
    Abstract: The present invention aims to provide an electrolyte solution for forming, for example, a secondary battery having excellent oxidation resistance and high-temperature storage characteristics; an electrochemical device such as a lithium-ion secondary battery that contains the electrolyte solution; and a module that contains the electrochemical device. The present invention provides an electrolyte solution containing a solvent and an electrolyte salt, wherein the solvent contains a fluorine-containing compound (A) represented by formula (1) shown below in an amount of 0.01 to 20% by mass, and a fluorine-containing compound (B) represented by formula (2) shown below in an amount of 10 to 80% by mass: Rf1OCOOR??(1) wherein Rf1 is a C1-C4 fluorine-containing alkyl group, and R is a C1-C4 non-fluorinated alkyl group, and Rf2OCOORf3??(2) wherein Rf2 and Rf3 are the same or different, and each is a C1-C4 fluorine-containing alkyl group.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 26, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shigeaki Yamazaki, Hideo Sakata, Mayuko Taeda, Meiten Koh, Aoi Nakazono, Michiru Kagawa, Akiyoshi Yamauchi
  • Publication number: 20150086876
    Abstract: The present invention aims to provide an electrolyte solution for forming, for example, a secondary battery having excellent oxidation resistance and high voltage cycle characteristics; an electrochemical device such as a lithium-ion secondary battery that contains the electrolyte solution; and a module that contains the electrochemical device. The present invention provides an electrolyte solution containing a solvent and an electrolyte salt, wherein the solvent contains a fluorine-containing compound (A) represented by formula (1) shown below, and a fluorine-containing compound (B) represented by formula (2) shown below: Rf1OCOOR??(1) wherein Rf1 is a C1-C4 fluorine-containing alkyl group, and R is a C1-C4 non-fluorinated alkyl group, and Rf2OCOORf3??(2) wherein Rf2 and Rf3 are the same or different, and each is a C1-C4 fluorine-containing alkyl group.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 26, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Mayuko Taeda, Meiten Koh, Aoi Nakazono, Michiru Kagawa, Akiyoshi Yamauchi
  • Publication number: 20150031822
    Abstract: A fluororubber composition which includes a fluororubber (A) and a carbon black (B). The fluororubber (A) is a vinylidene fluoride-based fluororubber including a structural unit (VdF unit) derived from vinylidene fluoride and a structural unit derived from at least one monomer selected from the group consisting of hexafluoropropylene (HFP), 2,3,3,3-tetrafluoro propylene, and perfluoro(alkyl vinyl ether) (PAVE). The molar ratio of the VdF unit to the structural unit derived from at least one monomer selected from the group consisting of HFP, 2,3,3,3-tetrafluoro propylene, and PAVE is 50/50 to 78/22. The fluororubber composition has a difference ?G? (G? (1%)-G? (100%)) of not lower than 120 kPa and not higher than 3,000 kPa, where G? (1%) denotes a modulus of shearing elasticity at a dynamic strain of 1%, G? (100%) denotes a modulus of shearing elasticity at a dynamic strain of 100%, and G? (1%) and G? (100%) are determined by a dynamic viscoelasticity test.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 29, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Ota, Akinori Ueda, Yuu Kadowaki, Mayuko Taeda, Masanori Kitaichi, Kazuhiro Yamamura, Michiko Doi, Shoji Fukuoka
  • Publication number: 20150017364
    Abstract: A fluororubber composition including a fluororubber having an iodine content of 10 to 90 mol % for the total mole of the polymer end groups and a carbon black (B), wherein a difference (?G?), represented by G?(1%)-G?(100%), is not lower than 120 kPa and not higher than 3,000 kPa, where G?(1%) denotes a shear modulus at a dynamic strain of 1% under an uncrosslinked state and G?(100%) denotes a shear modulus at a dynamic strain of 100% under an uncrosslinked state, and G?(1%) and G?(100%) are determined by a dynamic viscoelasticity test with a rubber process analyzer (RPA) in a condition that the measurement frequency is 1 Hz and the measurement temperature is 100° C.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 15, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Ota, Shigeru Morita, Akinori Ueda, Yuu Kadowaki, Masanori Kitaichi, Michiko Doi, Kazuhiro Yamamura, Shoji Fukuoka, Mayuko Taeda
  • Publication number: 20150004501
    Abstract: A non-aqueous electrolyte including (i) a compound represented by the general formula X—R—SO2F??(1) where R is a C1-12 linear or branched alkylene group optionally containing an ether bond and optionally hydrogen atoms of the alkylene group are partly substituted by a fluorine atom(s); and X is a carboxylic acid derivative group), (ii) a non-aqueous solvent and (iii) an electrolyte salt.
    Type: Application
    Filed: October 3, 2012
    Publication date: January 1, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Aoi Nakazono, Mayuko Taeda, Akiyoshi Yamauchi
  • Publication number: 20140288226
    Abstract: The invention provides a method for producing a fluororubber composition that is able to give a crosslinked article that exhibits not only heat resistance, but also excellent mechanical properties at high temperatures. A method for producing a fluororubber composition includes: a step (1-1) of mixing a fluororubber (A) and a carbon black (B) by means of an internal mixer until the maximum temperature reaches 80 to 220° C. so as to obtain an intermediate composition; a step (1-2) of cooling the intermediate composition to a temperature of less than 50° C.; and a step (2-1) of mixing the cooled intermediate composition until the maximum temperature reaches not lower than 10° C. but lower than 80° C. so as to obtain a fluororubber composition.
    Type: Application
    Filed: January 18, 2013
    Publication date: September 25, 2014
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Ota, Akinori Ueda, Yuu Kadowaki, Mayuko Taeda, Masanori Kitaichi, Michiko Doi, Kazuhiro Yamamura, Shoji Fukuoka
  • Publication number: 20140228482
    Abstract: The invention provides a fluororubber composition able to produce a crosslinked fluororubber article that exhibits not only heat resistance, but also excellent mechanical properties at high temperatures, and a method for producing same. The fluororubber composition contains: a fluororubber (A); and carbon black (B), wherein when the aforementioned fluororubber composition is immersed for 160 hours in an extraction solvent of acetone and hexane at an acetone:hexane mass ratio of 42.29:57.71 at 40° C. and an extraction residue that is not extracted and remains as a solid is separated from the aforementioned extraction solvent and dried and then the dry weight of the extraction residue is measured, the quantity of a solvent-insoluble polymer is not lower than 5%.
    Type: Application
    Filed: January 18, 2013
    Publication date: August 14, 2014
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Ota, Akinori Ueda, Yuu Kadowaki, Mayuko Taeda, Masanori Kitaichi, Michiko Doi, Kazuhiro Yamamura, Shoji Fukuoka
  • Publication number: 20140023938
    Abstract: The present invention aims to provide an electrochemical device excellent in high temperature storage characteristics and cycling characteristics at high voltages, and a nonaqueous electrolyte for the electrochemical device.
    Type: Application
    Filed: March 30, 2012
    Publication date: January 23, 2014
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Hideo Sakata, Meiten Koh, Akiyoshi Yamauchi, Hitomi Nakazawa, Tomoyo Sanagi, Aoi Nakazono, Yuki Adachi, Kyouhei Sawaki, Akinori Tani, Masahiro Tomita, Mayuko Taeda
  • Publication number: 20120107617
    Abstract: The present invention provides a vulcanized laminate in which a rubber layer and a fluororesin layer are firmly adhered to each other without using an adhesive or performing a surface treatment on the rubber layer and the fluororesin layer. The present invention relates to a laminate comprising a rubber layer (A) and a fluororesin layer (B) on the rubber layer (A), wherein the rubber layer (A) is a layer made of a rubber composition for vulcanization, the rubber composition for vulcanization contains an unvulcanized rubber (a1); at least one compound (a2) selected from the group consisting of a 1,8-diazabicyclo(5.4.0)undec-7-ene salt, a 1,5-diazabicyclo(4.3.0)-non-5-ene salt, 1,8-diazabicyclo(5.4.0)undec-7-ene, and 1,5-diazabicyclo(4.3.0)-non-5-ene; magnesium oxide (a3); and silica (a4), the amount of the compound (a2) is larger than 1.0 part by mass and not larger than 5.
    Type: Application
    Filed: May 19, 2010
    Publication date: May 3, 2012
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Toshiaki Masui, Tomihiko Yanagiguchi, Mayuko Taeda, Takeshi Inaba