Patents by Inventor Mazen Khaled NAZAL

Mazen Khaled NAZAL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11684905
    Abstract: A biochar-derived adsorbent preferably from Sargassum boveanum, macroalgae can be used for removing phenolic compounds, such as 2,4,6-trichlorophenol and 2,4-dimethylphenol, from aqueous solutions. The carbonization can improve the removal capability of the macroalgae adsorbent for such phenolic compounds with removal efficiencies of 60% or more from high salinity seawater and 100% from distilled water. The adsorption may occur through a mixed mechanism dominated by physisorption following pseudo second-order kinetics. The adsorption of the phenolic molecules may be spontaneous, endothermic and thermodynamically favorable.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: June 27, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Khaled Nazal, Nabeel Saeed Abuzaid
  • Patent number: 11517876
    Abstract: A method of forming an activated carbon sorbent from a seagrass. The method involves treating a seagrass with a base solution to form an intermediate solid, drying the intermediate solid to form a precursor, and pyrolyzing the precursor at 600 to 1000° C. to form the activated carbon sorbent. Preferably the seagrass is Halodule uninervis. The activated carbon sorbent is used in a method of removing an organic pollutant from a contaminated water. Preferred organic pollutants removed are phenols, specifically 2,4-dimethylphenol and 2,4-dichlorophenol.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: December 6, 2022
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Khaled Nazal, Nabeel Saeed Abuzaid
  • Patent number: 11504694
    Abstract: A biochar-derived adsorbent preferably from Sargassum boveanum, macroalgae can be used for removing phenolic compounds, such as 2,4,6-trichlorophenol and 2,4-dimethylphenol, from aqueous solutions. The carbonization can improve the removal capability of the macroalgae adsorbent for such phenolic compounds with removal efficiencies of 60% or more from high salinity seawater and 100% from distilled water. The adsorption may occur through a mixed mechanism dominated by physisorption following pseudo second-order kinetics. The adsorption of the phenolic molecules may be spontaneous, endothermic and thermodynamically favorable.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 22, 2022
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Khaled Nazal, Nabeel Saeed Abuzaid
  • Publication number: 20220250030
    Abstract: A biochar-derived adsorbent preferably from Sargassum boveanum, macroalgae can be used for removing phenolic compounds, such as 2,4,6-trichlorophenol and 2,4-dimethylphenol, from aqueous solutions. The carbonization can improve the removal capability of the macroalgae adsorbent for such phenolic compounds with removal efficiencies of 60% or more from high salinity seawater and 100% from distilled water. The adsorption may occur through a mixed mechanism dominated by physisorption following pseudo second-order kinetics. The adsorption of the phenolic molecules may be spontaneous, endothermic and thermodynamically favorable.
    Type: Application
    Filed: April 12, 2022
    Publication date: August 11, 2022
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Khaled NAZAL, Nabeel Saeed ABUZAID
  • Publication number: 20210229069
    Abstract: A biochar-derived adsorbent preferably from Sargassum boveanum, macroalgae can be used for removing phenolic compounds, such as 2,4,6-trichlorophenol and 2,4-dimethylphenol, from aqueous solutions. The carbonization can improve the removal capability of the macroalgae adsorbent for such phenolic compounds with removal efficiencies of 60% or more from high salinity seawater and 100% from distilled water. The adsorption may occur through a mixed mechanism dominated by physisorption following pseudo second-order kinetics. The adsorption of the phenolic molecules may be spontaneous, endothermic and thermodynamically favorable.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 29, 2021
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Khaled NAZAL, Nabeel Saeed ABUZAID
  • Patent number: 10301552
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: May 28, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal, Muataz Ali Atieh
  • Patent number: 10131852
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: November 20, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal, Muataz Ali Atieh
  • Patent number: 10093867
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: October 9, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal, Muataz Ali Atieh
  • Publication number: 20180273854
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Mohammad KHALED, Mazen Khaled NAZAL, Muataz Ali ATIEH
  • Patent number: 10005967
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: June 26, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal, Muataz Ali Atieh
  • Publication number: 20180010055
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 11, 2018
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Mohammad KHALED, Mazen Khaled NAZAL, Muataz Ali ATIEH
  • Patent number: 9862895
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: January 9, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal, Muataz Ali Atieh
  • Publication number: 20170321129
    Abstract: The present disclosure provides a method, for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds, the carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad KHALED, Mazen Khaled NAZAL, Muataz Ali ATIEH
  • Publication number: 20170292078
    Abstract: A method of removing sulfur compounds from a hydrocarbon fluid. The method includes contacting the hydrocarbon fluid with an adsorbent comprising a carbonaceous material doped with nanoparticles of uranyl oxide (UO3) to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon and carbon nanotubes, and the adsorbent has a weight ratio of C to U in the range from 9:1 to 17:1, and a weight ratio of C to O in the range from 5:1 to 13:1.
    Type: Application
    Filed: June 9, 2017
    Publication date: October 12, 2017
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Mohammad KHALED, Mazen Khaled NAZAL
  • Patent number: 9777225
    Abstract: A method of removing sulfur compounds from a hydrocarbon fluid. The method includes contacting the hydrocarbon fluid with an adsorbent comprising a carbonaceous material doped with nanoparticles of uranyl oxide (UO3) to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon and carbon nanotubes, and the adsorbent has a weight ratio of C to U in the range from 9:1 to 17:1, and a weight ratio of C to O in the range from 5:1 to 13:1.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 3, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal
  • Publication number: 20170233663
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 17, 2017
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Mohammad KHALED, Mazen Khaled NAZAL, Muataz Ali ATIEH
  • Patent number: 9708546
    Abstract: A method of removing sulfur compounds from a hydrocarbon fluid. The method includes contacting the hydrocarbon fluid with an adsorbent comprising a carbonaceous material doped with nanoparticles of uranyl oxide (UO3) to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon and carbon nanotubes, and the adsorbent has a weight ratio of C to U in the range from 9:1 to 17:1, and a weight ratio of C to O in the range from 5:1 to 13:1.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: July 18, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal
  • Patent number: 9663723
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: May 30, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mazen Mohammad Khaled, Mazen Khaled Nazal, Muataz Ali Atieh
  • Publication number: 20170121611
    Abstract: A method of removing sulfur compounds from a hydrocarbon fluid. The method includes contacting the hydrocarbon fluid with an adsorbent comprising a carbonaceous material doped with nanoparticles of uranyl oxide (UO3) to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon and carbon nanotubes, and the adsorbent has a weight ratio of C to U in the range from 9:1 to 17:1, and a weight ratio of C to O in the range from 5:1 to 13:1.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Mohammad KHALED, Mazen Khaled NAZAL
  • Publication number: 20170058204
    Abstract: The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 2, 2017
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mazen Mohammad KHALED, Mazen Khaled NAZAL, Muataz Ali ATIEH