Patents by Inventor Mazyar Mirrahimi

Mazyar Mirrahimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11223355
    Abstract: Techniques for modifying the Josephson potential of a transmon qubit by shunting the transmon with an inductance are described. The inclusion of this inductance may increase the confined potential of the qubit system compared with the conventional transmon, which may lead to a transmon qubit that is stable at much higher drive energies. The inductive shunt may serve the purpose of blocking some or all phase-slips between the electrodes of the qubit. As a result, the inductively shunted transmon may offer an advantage over conventional devices when used for applications involving high energy drives, whilst offering few to no drawbacks in comparison to conventional devices when used at lower drive energies.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: January 11, 2022
    Assignee: Yale University
    Inventors: W. Clarke Smith, Jayameenakshi Venkatraman, Xu Xiao, Lucas Verney, Luigi Frunzio, Shyam Shankar, Mazyar Mirrahimi, Michel Devoret
  • Publication number: 20210258010
    Abstract: Techniques for modifying the Josephson potential of a transmon qubit by shunting the transmon with an inductance are described. The inclusion of this inductance may increase the confined potential of the qubit system compared with the conventional transmon, which may lead to a transmon qubit that is stable at much higher drive energies. The inductive shunt may serve the purpose of blocking some or all phase-slips between the electrodes of the qubit. As a result, the inductively shunted transmon may offer an advantage over conventional devices when used for applications involving high energy drives, whilst offering few to no drawbacks in comparison to conventional devices when used at lower drive energies.
    Type: Application
    Filed: December 11, 2019
    Publication date: August 19, 2021
    Applicant: Yale University
    Inventors: W. Clarke Smith, Jayameenakshi Venkatraman, Xu Xiao, Lucas Verney, Luigi Frunzio, Shyam Shankar, Mazyar Mirrahimi, Michel Devoret
  • Publication number: 20200287540
    Abstract: Techniques for modifying the Josephson potential of a transmon qubit by shunting the transmon with an inductance are described. The inclusion of this inductance may increase the confined potential of the qubit system compared with the conventional transmon, which may lead to a transmon qubit that is stable at much higher drive energies. The inductive shunt may serve the purpose of blocking some or all phase-slips between the electrodes of the qubit. As a result, the inductively shunted transmon may offer an advantage over conventional devices when used for applications involving high energy drives, whilst offering few to no drawbacks in comparison to conventional devices when used at lower drive energies.
    Type: Application
    Filed: December 11, 2019
    Publication date: September 10, 2020
    Applicant: Yale University
    Inventors: W. Clarke Smith, Jayameenakshi Venkatraman, Xu Xiao, Lucas Verney, Luigi Frunzio, Shyam Shankar, Mazyar Mirrahimi, Michel Devoret